移动端下雪系统的实现
发表于2018-12-20
先上最终效果:
做完下雨做下雪,(下雨文章地址:http://gad.qq.com/article/detail/288769)下雪其实和下雨有很多类似的地方。类似的部分我就不再仔细说明,主要还是看不同的部分。个人认为下雪比下雨更加困难。
首先还是从雪粒子开始,雪粒子无法像雨一样根据深度来直接判断阻挡,因为雨是垂直下落的,但雪不是,雪是会有各种方向的,所以这里需要做实实在在的碰撞来处理遮挡。
private void OnTriggerEnter(Collider other) { SnowManager.inst.reclaim(this); }
就是用了一个触发器,就可以看到雪被挡住了。因为自带的物理引擎性能也很好,这样做还可以接受。
然后要开始处理积雪。第一步还是要实现一个雪的材质,起码要看上去像雪。
基本原理就是雪是白色的,然后加上一个法线,模拟雪表面的纹理。
VertexOutputBaseSimple1 vertForwardBase(VertexInput1 v)这样就有了基本的感觉。
{ UNITY_SETUP_INSTANCE_ID(v); VertexOutputBaseSimple1 o; UNITY_INITIALIZE_OUTPUT(VertexOutputBaseSimple1, o); float4 posWorld = mul(unity_ObjectToWorld, v.vertex); o.pos = UnityObjectToClipPos(v.vertex); o.pack0.xy = TRANSFORM_TEX(v.texcoord, _MainTex); o.pack0.zw = TRANSFORM_TEX(v.texcoord, _BumpMap); float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz; float3 worldNormal = UnityObjectToWorldNormal(v.normal); float3 worldTangent = UnityObjectToWorldDir(v.tangent.xyz); float tangentSign = v.tangent.w * unity_WorldTransformParams.w; float3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign; o.tSpace0 = float4(worldTangent.x, worldBinormal.x, worldNormal.x, worldPos.x); o.tSpace1 = float4(worldTangent.y, worldBinormal.y, worldNormal.y, worldPos.y); o.tSpace2 = float4(worldTangent.z, worldBinormal.z, worldNormal.z, worldPos.z); o.vlight = ShadeSH9(float4(worldNormal, 1)); o.depthuv = mul(depthMat, float4(worldPos, 1)); TRANSFER_SHADOW(o); UNITY_TRANSFER_FOG(o, o.pos); return o; }
float3 H = normalize(_WorldSpaceLightPos0.xyz + viewDir); float NdotH = max(0, dot(worldNormal, H)); float nl = dot(float3(i.tSpace0.z, i.tSpace1.z, i.tSpace1.z), _WorldSpaceLightPos0.xyz); float NdotL = dot(worldNormal, _WorldSpaceLightPos0.xyz); float NdotV = dot(worldNormal, viewDir); float3 shadow = atten * _LightColor0.rgb; float y = NdotL * shadow; float2 uv_ramp = float2(_Strength * NdotV, y); float3 ramp = tex2D(_SnowTex, uv_ramp.xy); half ssatten = 1.0; half3 specular = saturate(pow(NdotH, _Shininess * 128.0) * _Specular); float shadow1 = SHADOW_ATTENUATION(i); c.rgb = lerp(albedo.rgb * _Color * shadow * nl * _LightColor0.rgb + albedo.rgb * _Color * 0.5, i.vlight, coverage) + coverage * (ramp + albedo * (specular) * shadow); c.rgb *= shadow1;
float f; float3 q = worldPos; f = 0.5000*noise(q); q = q * 2.02; f += 0.2500*noise(q); q = q * 2.03; f += 0.1250*noise(q); q = q * 2.01; f += 0.0625*noise(q); float NdotD = saturate(dot(normal, _WorldSpaceLightPos0.xyz)); float coverage = NdotD - lerp(1, -1, _cover); coverage = saturate(coverage); coverage = f * _noise - lerp(1, -1, coverage) + max(-0.1,i.tSpace1.z * _cover);
可以看到地面和球体都有部分被雪覆盖的痕迹。 接下来依然要处理遮挡部分,和下雨是一样的。
最后是运动痕迹,和以前的草思路一样。
float4 grassuv1 = mul(MoveMatrix, float4(worldPos, 1)); float2 grassuv2 = grassuv1.xy / grassuv1.w * 0.5 + 0.5; #if UNITY_UV_STARTS_AT_TOP grassuv2.y = 1 - grassuv2.y; #endif float4 n = tex2D(_MoveTex, grassuv2); n.xz = (n.xz - 0.5) * 2; n.y *= _cover; UNITY_LIGHT_ATTENUATION(atten, i, worldPos) float4 c = 0; float3 worldNormal; worldNormal.x = dot(i.tSpace0.xyz, normal); worldNormal.y = dot(i.tSpace1.xyz, normal); worldNormal.z = dot(i.tSpace2.xyz, normal); worldNormal = normalize(worldNormal); c.rgb += albedo.rgb * i.vlight; float3 H = normalize(_WorldSpaceLightPos0.xyz + viewDir); float NdotH = max(0, dot(worldNormal, H)); float nl = dot(float3(i.tSpace0.z, i.tSpace1.z, i.tSpace1.z), _WorldSpaceLightPos0.xyz); float NdotL = dot(worldNormal, _WorldSpaceLightPos0.xyz); float NdotV = dot(worldNormal, viewDir); float3 shadow = atten * _LightColor0.rgb; float y = NdotL * shadow; float2 uv_ramp = float2(_Strength * NdotV, y); float3 ramp = tex2D(_SnowTex, uv_ramp.xy); half ssatten = 1.0; half3 specular = saturate(pow(NdotH, _Shininess * 128.0) * _Specular); float shadow1 = SHADOW_ATTENUATION(i); c.rgb = lerp(albedo.rgb * _Color * shadow * nl * _LightColor0.rgb + albedo.rgb * _Color * 0.5, i.vlight, coverage) + min(1.03, coverage * (coverage * 0.05 + 1)) * (ramp + albedo * (specular) * shadow); c.rgb *= shadow1; if (needLine > 0.5 && coverage > 0.7 && n.y > 0.1) { c.rgb *= (1 - pow(1 - n.y * f, 5) * 0.3 * pow(coverage, 5)); }
然后说下这个雪的问题。
顶点片段着色器并不复杂,而且可以适当减少噪声计算来获得好的帧率。问题大的反而是为了处理雪的碰撞,以及雪的速度较慢,会积累大量的粒子在屏幕里。
所以改良措施就是直接用雪粒子特效代替,因为粒子特效是多线程优化过的,也支持碰撞,性能会好不少。
其他应该和下雨类似,需要自己整合到项目中。
最后是插件地址:
https://assetstore.unity.com/packages/vfx/shaders/mobilesnowsystem-135279