光栅化渲染器(五)2d坐标系与3d坐标系
发表于2018-07-04
前面我们基本完成了光栅渲染器的2d部分,接下来开始光栅渲染器的3d部分吧。不过前面的2d光栅渲染器实际上还有优化的空间,建议大家自己完善一下(实际上,由于博主迫切地想玩3d,实际上漏了很多算法的实现和优化,比如三角形光栅渲染用边缘方程填充,2d直线裁剪,避免重复光栅化等等)
设计思路和部分代码参考韦前辈大神的mini3d。
一、更改数据结构
typedef struct { float x, y,z,w=1; } vector_t; typedef vector_t point_t; typedef struct { float r, g, b, a; } color_t; typedef struct { float m[4][4]; } matrix_t;//矩阵 typedef struct { point_t pos; color_t color; } vertex_t;
二、加入3d数学库
// 计算插值:t 为 [0, 1] 之间的数值 float interp(float x1, float x2, float t) { return x1 + (x2 - x1) * t; } // 矢量插值,t取值 [0, 1] void vector_interp(vector_t &z, vector_t x1, vector_t x2, float t) { z.x = interp(x1.x, x2.x, t); z.y = interp(x1.y, x2.y, t); z.z = interp(x1.z, x2.z, t); } //计算2点距离 float vector_distance( vector_t v1, vector_t v2) { float sq = (v1.x-v2.x) *(v1.x - v2.x) + (v1.y -v2.y)* (v1.y - v2.y)+(v1.z-v2.z)*(v1.z - v2.z); return (float)sqrt(sq); } // | v | float vector_length(const vector_t *v) { float sq = v->x * v->x + v->y * v->y + v->z * v->z; return (float)sqrt(sq); } // z = x + y void vector_add(vector_t *z, const vector_t *x, const vector_t *y) { z->x = x->x + y->x; z->y = x->y + y->y; z->z = x->z + y->z; z->w = 1.0; } // z = x - y void vector_sub(vector_t *z, const vector_t *x, const vector_t *y) { z->x = x->x - y->x; z->y = x->y - y->y; z->z = x->z - y->z; z->w = 1.0; } // 矢量点乘 float vector_dotproduct(const vector_t *x, const vector_t *y) { return x->x * y->x + x->y * y->y + x->z * y->z; } // 矢量叉乘 void vector_crossproduct(vector_t *z, const vector_t *x, const vector_t *y) { float m1, m2, m3; m1 = x->y * y->z - x->z * y->y; m2 = x->z * y->x - x->x * y->z; m3 = x->x * y->y - x->y * y->x; z->x = m1; z->y = m2; z->z = m3; z->w = 1.0f; } // 矢量插值,t取值 [0, 1] void vector_interp(vector_t *z, const vector_t *x1, const vector_t *x2, float t) { z->x = interp(x1->x, x2->x, t); z->y = interp(x1->y, x2->y, t); z->z = interp(x1->z, x2->z, t); z->w = 1.0f; } // 矢量归一化 void vector_normalize(vector_t *v) { float length = vector_length(v); if (length != 0.0f) { float inv = 1.0f / length; v->x *= inv; v->y *= inv; v->z *= inv; } } // c = a + b void matrix_add(matrix_t *c, const matrix_t *a, const matrix_t *b) { int i, j; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) c->m[i][j] = a->m[i][j] + b->m[i][j]; } } // c = a - b void matrix_sub(matrix_t *c, const matrix_t *a, const matrix_t *b) { int i, j; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) c->m[i][j] = a->m[i][j] - b->m[i][j]; } } // c = a * b void matrix_mul(matrix_t *c, const matrix_t *a, const matrix_t *b) { matrix_t z; int i, j; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { z.m[j][i] = (a->m[j][0] * b->m[0][i]) + (a->m[j][1] * b->m[1][i]) + (a->m[j][2] * b->m[2][i]) + (a->m[j][3] * b->m[3][i]); } } c[0] = z; } // c = a * f void matrix_scale(matrix_t *c, const matrix_t *a, float f) { int i, j; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) c->m[i][j] = a->m[i][j] * f; } } // y = x * m void matrix_apply(vector_t *y, const vector_t *x, const matrix_t *m) { float X = x->x, Y = x->y, Z = x->z, W = x->w; y->x = X * m->m[0][0] + Y * m->m[1][0] + Z * m->m[2][0] + W * m->m[3][0]; y->y = X * m->m[0][1] + Y * m->m[1][1] + Z * m->m[2][1] + W * m->m[3][1]; y->z = X * m->m[0][2] + Y * m->m[1][2] + Z * m->m[2][2] + W * m->m[3][2]; y->w = X * m->m[0][3] + Y * m->m[1][3] + Z * m->m[2][3] + W * m->m[3][3]; } void matrix_set_identity(matrix_t *m) { m->m[0][0] = m->m[1][1] = m->m[2][2] = m->m[3][3] = 1.0f; m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f; m->m[1][0] = m->m[1][2] = m->m[1][3] = 0.0f; m->m[2][0] = m->m[2][1] = m->m[2][3] = 0.0f; m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f; } void matrix_set_zero(matrix_t *m) { m->m[0][0] = m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f; m->m[1][0] = m->m[1][1] = m->m[1][2] = m->m[1][3] = 0.0f; m->m[2][0] = m->m[2][1] = m->m[2][2] = m->m[2][3] = 0.0f; m->m[3][0] = m->m[3][1] = m->m[3][2] = m->m[3][3] = 0.0f; } // 平移变换 void matrix_set_translate(matrix_t *m, float x, float y, float z) { matrix_set_identity(m); m->m[3][0] = x; m->m[3][1] = y; m->m[3][2] = z; } // 缩放变换 void matrix_set_scale(matrix_t *m, float x, float y, float z) { matrix_set_identity(m); m->m[0][0] = x; m->m[1][1] = y; m->m[2][2] = z; } // 旋转矩阵 void matrix_set_rotate(matrix_t *m, float x, float y, float z, float theta) { float qsin = (float)sin(theta * 0.5f); float qcos = (float)cos(theta * 0.5f); vector_t vec = { x, y, z, 1.0f }; float w = qcos; vector_normalize(&vec); x = vec.x * qsin; y = vec.y * qsin; z = vec.z * qsin; m->m[0][0] = 1 - 2 * y * y - 2 * z * z; m->m[1][0] = 2 * x * y - 2 * w * z; m->m[2][0] = 2 * x * z + 2 * w * y; m->m[0][1] = 2 * x * y + 2 * w * z; m->m[1][1] = 1 - 2 * x * x - 2 * z * z; m->m[2][1] = 2 * y * z - 2 * w * x; m->m[0][2] = 2 * x * z - 2 * w * y; m->m[1][2] = 2 * y * z + 2 * w * x; m->m[2][2] = 1 - 2 * x * x - 2 * y * y; m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f; m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f; m->m[3][3] = 1.0f; }
以上代码完全照抄mid3d项目,实际上矩阵变换,矢量点乘等的代码形式。强烈建议大家看懂甚至动手推导一下,不理解的去查阅《3d数学基础 图形与游戏开发》
三、加入坐标系统
/===================================================================== // 坐标变换 //===================================================================== typedef struct { matrix_t world; // 世界坐标变换 matrix_t view; // 摄影机坐标变换 matrix_t projection; // 投影变换 matrix_t transform; // transform = world * view * projection } transform_t; transform_t Transform;//全局变量 // 矩阵更新,计算 transform = world * view * projection void transform_update(transform_t *ts) { matrix_t m; matrix_mul(&m, &ts->world, &ts->view); matrix_mul(&ts->transform, &m, &ts->projection); } // 将矢量 x 进行 project void transform_apply( transform_t *ts, vector_t *y, vector_t *x) { matrix_apply(y, x, &ts->transform); } // 世界坐标到相机坐标 void transform_homogenize( transform_t *ts, vector_t *y, vector_t *x) { float rhw = 1.0f / x->w; y->x = (x->x * rhw + 1.0f) * SCREEN_WIDTH * 0.5f; y->y = (1.0f - x->y * rhw) * SCREEN_HEIGHT * 0.5f; y->z = x->z * rhw; y->w = 1.0f; } // D3DXMatrixPerspectiveFovLH void matrix_set_perspective(matrix_t *m, float fovy, float aspect, float zn, float zf) { float fax = 1.0f / (float)tan(fovy * 0.5f); matrix_set_zero(m); m->m[0][0] = (float)(fax / aspect); m->m[1][1] = (float)(fax); m->m[2][2] = zf / (zf - zn); m->m[3][2] = -zn * zf / (zf - zn); m->m[2][3] = 1; }
四、获取投影到屏幕上的2d点
更改三角形光栅化
void DrawTriangle(vertex_t ve1, vertex_t ve2, vertex_t ve3) { color_t c{ 1.0,1.0,0,1.0 };//黄色 point_t p1 = ve1.pos; point_t p2 = ve2.pos; point_t p3 = ve3.pos; point_t v1, v2, v3, c1, c2, c3; // 按照 Transform 变化 transform_apply(&Transform, &c1, &p1); transform_apply(&Transform, &c2, &p2); transform_apply(&Transform, &c3, &p3); // 归一化 transform_homogenize(&Transform, &v1, &c1); transform_homogenize(&Transform, &v2, &c2); transform_homogenize(&Transform, &v3, &c3); if (v1.x == v2.x&&v1.x == v3.x) return; if (v1.y == v2.y&&v1.y == v3.y) return; //DrawLine(v1, v2,c); //DrawLine(v2, v3,c); //DrawLine(v3, v1,c); vector<float> PointY{ v1.y,v2.y,v3.y }; sort(PointY.begin(), PointY.end()); float midY = PointY[1]; float minY = PointY[0]; float maxY = PointY[2]; point_t MaxYPoint; point_t MidYPoint; point_t MinYPoint; if (midY != minY && midY != maxY) { if (midY == v1.y) { MidYPoint = v1; if (maxY == v2.y) { MaxYPoint = v2; MinYPoint = v3; } if (maxY == v3.y) { MaxYPoint = v3; MinYPoint = v2; } } else if (midY == v2.y) { MidYPoint = v2; if (maxY == v1.y) { MaxYPoint = v1; MinYPoint = v3; } if (maxY == v3.y) { MaxYPoint = v3; MinYPoint = v1; } } else if (midY == v3.y) { MidYPoint = v3; if (maxY == v1.y) { MaxYPoint = v1; MinYPoint = v2; } if (maxY == v2.y) { MaxYPoint = v2; MinYPoint = v1; } } point_t newV; float t = (midY - maxY) / (minY - maxY); newV.x = interp(MaxYPoint.x, MinYPoint.x, t); newV.y = midY; DrawTriangle_ScanConversion(MaxYPoint, MidYPoint, newV, c); DrawTriangle_ScanConversion(MinYPoint, MidYPoint, newV, c); } else { if (v1.y == v2.y) DrawTriangle_ScanConversion(v3, v1, v2, c); if (v1.y == v3.y) DrawTriangle_ScanConversion(v2, v1, v3, c); if (v3.y == v2.y) DrawTriangle_ScanConversion(v1, v3, v2, c); } }
可以看到我们使用了transform_apply和transform_homogenize获取到了3d点到屏幕上的坐标。
五、顶点输入和立方体绘制
vertex_t mesh[8] = { { { 1, -1, 1, 1 }}, { { -1, -1, 1, 1 } }, { { -1, 1, 1, 1 }}, { { 1, 1, 1, 1 } }, { { 1, -1, -1, 1 } }, { { -1, -1, -1, 1 }, { { -1, 1, -1, 1 }}, { { 1, 1, -1, 1 } }, };
画正方形
void draw_plane( int a, int b, int c, int d) { vertex_t p1 = mesh[a], p2 = mesh[b], p3 = mesh[c], p4 = mesh[d]; DrawTriangle(p1, p2, p3); DrawTriangle(p3, p4, p1); }
画立方体
//************************画立方体******************* void DrawBox() { draw_plane( 0, 1, 2, 3); draw_plane(4, 5, 6, 7); draw_plane( 0, 4, 5, 1); draw_plane( 1, 5, 6, 2); draw_plane( 2, 6, 7, 3); draw_plane( 3, 7, 4, 0); }
六、摄像头控制
//************************摄像头控制******************* // 设置摄像机 void matrix_set_lookat(matrix_t *m, const vector_t *eye, const vector_t *at, const vector_t *up) { vector_t xaxis, yaxis, zaxis; vector_sub(&zaxis, at, eye); vector_normalize(&zaxis); vector_crossproduct(&xaxis, up, &zaxis); vector_normalize(&xaxis); vector_crossproduct(&yaxis, &zaxis, &xaxis); m->m[0][0] = xaxis.x; m->m[1][0] = xaxis.y; m->m[2][0] = xaxis.z; m->m[3][0] = -vector_dotproduct(&xaxis, eye); m->m[0][1] = yaxis.x; m->m[1][1] = yaxis.y; m->m[2][1] = yaxis.z; m->m[3][1] = -vector_dotproduct(&yaxis, eye); m->m[0][2] = zaxis.x; m->m[1][2] = zaxis.y; m->m[2][2] = zaxis.z; m->m[3][2] = -vector_dotproduct(&zaxis, eye); m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f; m->m[3][3] = 1.0f; } void camera_at_zero(transform_t *transform, float x, float y, float z) { point_t eye = { x, y, z, 1 }, at = { 0, 0, 0, 1 }, up = { 0, 0, 1, 1 }; matrix_set_lookat(&transform->view, &eye, &at, &up); transform_update(transform); }
七、修改重绘函数
float CameraPos=3.5; float Alpha = 1;
以上2个是相关的全局变量
// 重绘函数 void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); // 清屏幕 transform_init(&Transform);//初始化摄像头 camera_at_zero(&Transform, CameraPos, 0, 0); glBegin(GL_POINTS); DrawBox(); glEnd(); glFlush(); // 将所有输出到显示屏上 }
修改后运行程序可以看到一个正方形,这样不好看,根本不能判断是不是3d,所以我们旋转它
八、旋转立方体
void DrawBox() { matrix_t m; matrix_set_rotate(&m, -1, 1, 1, Alpha); Transform.world = m; transform_update(&Transform); draw_plane( 0, 1, 2, 3); draw_plane(4, 5, 6, 7); draw_plane( 0, 4, 5, 1); draw_plane( 1, 5, 6, 2); draw_plane( 2, 6, 7, 3); draw_plane( 3, 7, 4, 0); }
这样静止不动没意思,我们来控制摄像头来改变我们所看到的立方体吧。
九、键盘控制摄像头
//************************键盘鼠标输入******************* void myKeyBoard(unsigned char theKey, int MouseX, int MouseY) { switch (theKey) { case 'w': CameraPos -= 0.1; myDisplay();//重绘函数不能实时更新,所以我们需要这样,如果有更好的方法,希望大家告知 break; case 's': CameraPos += 0.1; myDisplay(); break; case 'a': Alpha += 0.1; myDisplay(); break; case 'd': Alpha -= 0.1; myDisplay(); break; default: break; } }
接下来注册键盘输入事件
void main(int argc, char **argv) { glutInit(&argc, argv); // 初始化工具包 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); // 设置显式模式 glutInitWindowSize(SCREEN_WIDTH, SCREEN_HEIGHT); // 设置窗口大小 glutInitWindowPosition(200, 0); // 设置窗口位置 glutCreateWindow(SCREEN_TITLE); // 打开屏幕窗口 glutDisplayFunc(myDisplay); // 注册绘制函数 myInit(); glutKeyboardFunc( myKeyBoard);//注册键盘输入函数 glutMainLoop(); // 进入主循环 }
好了,完成了,大家可以尝试通过a,s,d,w按键控制摄像头,我只是贴了我的代码,矩阵变换3d变换旋转还是建议大家自己推导一下
来自:https://blog.csdn.net/qq_34244317/article/details/78398837