光栅化渲染器(五)2d坐标系与3d坐标系
发表于2018-07-04
前面我们基本完成了光栅渲染器的2d部分,接下来开始光栅渲染器的3d部分吧。不过前面的2d光栅渲染器实际上还有优化的空间,建议大家自己完善一下(实际上,由于博主迫切地想玩3d,实际上漏了很多算法的实现和优化,比如三角形光栅渲染用边缘方程填充,2d直线裁剪,避免重复光栅化等等)
设计思路和部分代码参考韦前辈大神的mini3d。
一、更改数据结构
typedef struct { float x, y,z,w=1; } vector_t; typedef vector_t point_t; typedef struct { float r, g, b, a; } color_t; typedef struct { float m[4][4]; } matrix_t;//矩阵 typedef struct { point_t pos; color_t color; } vertex_t;
二、加入3d数学库
// 计算插值:t 为 [0, 1] 之间的数值
float interp(float x1, float x2, float t) { return x1 + (x2 - x1) * t; }
// 矢量插值,t取值 [0, 1]
void vector_interp(vector_t &z, vector_t x1, vector_t x2, float t) {
z.x = interp(x1.x, x2.x, t);
z.y = interp(x1.y, x2.y, t);
z.z = interp(x1.z, x2.z, t);
}
//计算2点距离
float vector_distance( vector_t v1, vector_t v2) {
float sq = (v1.x-v2.x) *(v1.x - v2.x) + (v1.y -v2.y)* (v1.y - v2.y)+(v1.z-v2.z)*(v1.z - v2.z);
return (float)sqrt(sq);
}
// | v |
float vector_length(const vector_t *v) {
float sq = v->x * v->x + v->y * v->y + v->z * v->z;
return (float)sqrt(sq);
}
// z = x + y
void vector_add(vector_t *z, const vector_t *x, const vector_t *y) {
z->x = x->x + y->x;
z->y = x->y + y->y;
z->z = x->z + y->z;
z->w = 1.0;
}
// z = x - y
void vector_sub(vector_t *z, const vector_t *x, const vector_t *y) {
z->x = x->x - y->x;
z->y = x->y - y->y;
z->z = x->z - y->z;
z->w = 1.0;
}
// 矢量点乘
float vector_dotproduct(const vector_t *x, const vector_t *y) {
return x->x * y->x + x->y * y->y + x->z * y->z;
}
// 矢量叉乘
void vector_crossproduct(vector_t *z, const vector_t *x, const vector_t *y) {
float m1, m2, m3;
m1 = x->y * y->z - x->z * y->y;
m2 = x->z * y->x - x->x * y->z;
m3 = x->x * y->y - x->y * y->x;
z->x = m1;
z->y = m2;
z->z = m3;
z->w = 1.0f;
}
// 矢量插值,t取值 [0, 1]
void vector_interp(vector_t *z, const vector_t *x1, const vector_t *x2, float t) {
z->x = interp(x1->x, x2->x, t);
z->y = interp(x1->y, x2->y, t);
z->z = interp(x1->z, x2->z, t);
z->w = 1.0f;
}
// 矢量归一化
void vector_normalize(vector_t *v) {
float length = vector_length(v);
if (length != 0.0f) {
float inv = 1.0f / length;
v->x *= inv;
v->y *= inv;
v->z *= inv;
}
}
// c = a + b
void matrix_add(matrix_t *c, const matrix_t *a, const matrix_t *b) {
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
c->m[i][j] = a->m[i][j] + b->m[i][j];
}
}
// c = a - b
void matrix_sub(matrix_t *c, const matrix_t *a, const matrix_t *b) {
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
c->m[i][j] = a->m[i][j] - b->m[i][j];
}
}
// c = a * b
void matrix_mul(matrix_t *c, const matrix_t *a, const matrix_t *b) {
matrix_t z;
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
z.m[j][i] = (a->m[j][0] * b->m[0][i]) +
(a->m[j][1] * b->m[1][i]) +
(a->m[j][2] * b->m[2][i]) +
(a->m[j][3] * b->m[3][i]);
}
}
c[0] = z;
}
// c = a * f
void matrix_scale(matrix_t *c, const matrix_t *a, float f) {
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
c->m[i][j] = a->m[i][j] * f;
}
}
// y = x * m
void matrix_apply(vector_t *y, const vector_t *x, const matrix_t *m) {
float X = x->x, Y = x->y, Z = x->z, W = x->w;
y->x = X * m->m[0][0] + Y * m->m[1][0] + Z * m->m[2][0] + W * m->m[3][0];
y->y = X * m->m[0][1] + Y * m->m[1][1] + Z * m->m[2][1] + W * m->m[3][1];
y->z = X * m->m[0][2] + Y * m->m[1][2] + Z * m->m[2][2] + W * m->m[3][2];
y->w = X * m->m[0][3] + Y * m->m[1][3] + Z * m->m[2][3] + W * m->m[3][3];
}
void matrix_set_identity(matrix_t *m) {
m->m[0][0] = m->m[1][1] = m->m[2][2] = m->m[3][3] = 1.0f;
m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f;
m->m[1][0] = m->m[1][2] = m->m[1][3] = 0.0f;
m->m[2][0] = m->m[2][1] = m->m[2][3] = 0.0f;
m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f;
}
void matrix_set_zero(matrix_t *m) {
m->m[0][0] = m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f;
m->m[1][0] = m->m[1][1] = m->m[1][2] = m->m[1][3] = 0.0f;
m->m[2][0] = m->m[2][1] = m->m[2][2] = m->m[2][3] = 0.0f;
m->m[3][0] = m->m[3][1] = m->m[3][2] = m->m[3][3] = 0.0f;
}
// 平移变换
void matrix_set_translate(matrix_t *m, float x, float y, float z) {
matrix_set_identity(m);
m->m[3][0] = x;
m->m[3][1] = y;
m->m[3][2] = z;
}
// 缩放变换
void matrix_set_scale(matrix_t *m, float x, float y, float z) {
matrix_set_identity(m);
m->m[0][0] = x;
m->m[1][1] = y;
m->m[2][2] = z;
}
// 旋转矩阵
void matrix_set_rotate(matrix_t *m, float x, float y, float z, float theta) {
float qsin = (float)sin(theta * 0.5f);
float qcos = (float)cos(theta * 0.5f);
vector_t vec = { x, y, z, 1.0f };
float w = qcos;
vector_normalize(&vec);
x = vec.x * qsin;
y = vec.y * qsin;
z = vec.z * qsin;
m->m[0][0] = 1 - 2 * y * y - 2 * z * z;
m->m[1][0] = 2 * x * y - 2 * w * z;
m->m[2][0] = 2 * x * z + 2 * w * y;
m->m[0][1] = 2 * x * y + 2 * w * z;
m->m[1][1] = 1 - 2 * x * x - 2 * z * z;
m->m[2][1] = 2 * y * z - 2 * w * x;
m->m[0][2] = 2 * x * z - 2 * w * y;
m->m[1][2] = 2 * y * z + 2 * w * x;
m->m[2][2] = 1 - 2 * x * x - 2 * y * y;
m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f;
m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f;
m->m[3][3] = 1.0f;
}
以上代码完全照抄mid3d项目,实际上矩阵变换,矢量点乘等的代码形式。强烈建议大家看懂甚至动手推导一下,不理解的去查阅《3d数学基础 图形与游戏开发》
三、加入坐标系统
/=====================================================================
// 坐标变换
//=====================================================================
typedef struct {
matrix_t world; // 世界坐标变换
matrix_t view; // 摄影机坐标变换
matrix_t projection; // 投影变换
matrix_t transform; // transform = world * view * projection
} transform_t;
transform_t Transform;//全局变量
// 矩阵更新,计算 transform = world * view * projection
void transform_update(transform_t *ts) {
matrix_t m;
matrix_mul(&m, &ts->world, &ts->view);
matrix_mul(&ts->transform, &m, &ts->projection);
}
// 将矢量 x 进行 project
void transform_apply( transform_t *ts, vector_t *y, vector_t *x) {
matrix_apply(y, x, &ts->transform);
}
// 世界坐标到相机坐标
void transform_homogenize( transform_t *ts, vector_t *y, vector_t *x) {
float rhw = 1.0f / x->w;
y->x = (x->x * rhw + 1.0f) * SCREEN_WIDTH * 0.5f;
y->y = (1.0f - x->y * rhw) * SCREEN_HEIGHT * 0.5f;
y->z = x->z * rhw;
y->w = 1.0f;
}
// D3DXMatrixPerspectiveFovLH
void matrix_set_perspective(matrix_t *m, float fovy, float aspect, float zn, float zf) {
float fax = 1.0f / (float)tan(fovy * 0.5f);
matrix_set_zero(m);
m->m[0][0] = (float)(fax / aspect);
m->m[1][1] = (float)(fax);
m->m[2][2] = zf / (zf - zn);
m->m[3][2] = -zn * zf / (zf - zn);
m->m[2][3] = 1;
}
四、获取投影到屏幕上的2d点
更改三角形光栅化
void DrawTriangle(vertex_t ve1, vertex_t ve2, vertex_t ve3)
{
color_t c{ 1.0,1.0,0,1.0 };//黄色
point_t p1 = ve1.pos;
point_t p2 = ve2.pos;
point_t p3 = ve3.pos;
point_t v1, v2, v3, c1, c2, c3;
// 按照 Transform 变化
transform_apply(&Transform, &c1, &p1);
transform_apply(&Transform, &c2, &p2);
transform_apply(&Transform, &c3, &p3);
// 归一化
transform_homogenize(&Transform, &v1, &c1);
transform_homogenize(&Transform, &v2, &c2);
transform_homogenize(&Transform, &v3, &c3);
if (v1.x == v2.x&&v1.x == v3.x) return;
if (v1.y == v2.y&&v1.y == v3.y) return;
//DrawLine(v1, v2,c);
//DrawLine(v2, v3,c);
//DrawLine(v3, v1,c);
vector<float> PointY{ v1.y,v2.y,v3.y };
sort(PointY.begin(), PointY.end());
float midY = PointY[1];
float minY = PointY[0];
float maxY = PointY[2];
point_t MaxYPoint;
point_t MidYPoint;
point_t MinYPoint;
if (midY != minY && midY != maxY)
{
if (midY == v1.y)
{
MidYPoint = v1;
if (maxY == v2.y)
{
MaxYPoint = v2;
MinYPoint = v3;
}
if (maxY == v3.y)
{
MaxYPoint = v3;
MinYPoint = v2;
}
}
else if (midY == v2.y)
{
MidYPoint = v2;
if (maxY == v1.y)
{
MaxYPoint = v1;
MinYPoint = v3;
}
if (maxY == v3.y)
{
MaxYPoint = v3;
MinYPoint = v1;
}
}
else if (midY == v3.y)
{
MidYPoint = v3;
if (maxY == v1.y)
{
MaxYPoint = v1;
MinYPoint = v2;
}
if (maxY == v2.y)
{
MaxYPoint = v2;
MinYPoint = v1;
}
}
point_t newV;
float t = (midY - maxY) / (minY - maxY);
newV.x = interp(MaxYPoint.x, MinYPoint.x, t);
newV.y = midY;
DrawTriangle_ScanConversion(MaxYPoint, MidYPoint, newV, c);
DrawTriangle_ScanConversion(MinYPoint, MidYPoint, newV, c);
}
else
{
if (v1.y == v2.y) DrawTriangle_ScanConversion(v3, v1, v2, c);
if (v1.y == v3.y) DrawTriangle_ScanConversion(v2, v1, v3, c);
if (v3.y == v2.y) DrawTriangle_ScanConversion(v1, v3, v2, c);
}
}
可以看到我们使用了transform_apply和transform_homogenize获取到了3d点到屏幕上的坐标。
五、顶点输入和立方体绘制
vertex_t mesh[8] = {
{ { 1, -1, 1, 1 }},
{ { -1, -1, 1, 1 } },
{ { -1, 1, 1, 1 }},
{ { 1, 1, 1, 1 } },
{ { 1, -1, -1, 1 } },
{ { -1, -1, -1, 1 },
{ { -1, 1, -1, 1 }},
{ { 1, 1, -1, 1 } },
};
画正方形
void draw_plane( int a, int b, int c, int d) {
vertex_t p1 = mesh[a], p2 = mesh[b], p3 = mesh[c], p4 = mesh[d];
DrawTriangle(p1, p2, p3);
DrawTriangle(p3, p4, p1);
}
画立方体
//************************画立方体*******************
void DrawBox()
{
draw_plane( 0, 1, 2, 3);
draw_plane(4, 5, 6, 7);
draw_plane( 0, 4, 5, 1);
draw_plane( 1, 5, 6, 2);
draw_plane( 2, 6, 7, 3);
draw_plane( 3, 7, 4, 0);
}
六、摄像头控制
//************************摄像头控制*******************
// 设置摄像机
void matrix_set_lookat(matrix_t *m, const vector_t *eye, const vector_t *at, const vector_t *up) {
vector_t xaxis, yaxis, zaxis;
vector_sub(&zaxis, at, eye);
vector_normalize(&zaxis);
vector_crossproduct(&xaxis, up, &zaxis);
vector_normalize(&xaxis);
vector_crossproduct(&yaxis, &zaxis, &xaxis);
m->m[0][0] = xaxis.x;
m->m[1][0] = xaxis.y;
m->m[2][0] = xaxis.z;
m->m[3][0] = -vector_dotproduct(&xaxis, eye);
m->m[0][1] = yaxis.x;
m->m[1][1] = yaxis.y;
m->m[2][1] = yaxis.z;
m->m[3][1] = -vector_dotproduct(&yaxis, eye);
m->m[0][2] = zaxis.x;
m->m[1][2] = zaxis.y;
m->m[2][2] = zaxis.z;
m->m[3][2] = -vector_dotproduct(&zaxis, eye);
m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f;
m->m[3][3] = 1.0f;
}
void camera_at_zero(transform_t *transform, float x, float y, float z) {
point_t eye = { x, y, z, 1 }, at = { 0, 0, 0, 1 }, up = { 0, 0, 1, 1 };
matrix_set_lookat(&transform->view, &eye, &at, &up);
transform_update(transform);
}
七、修改重绘函数
float CameraPos=3.5; float Alpha = 1;
以上2个是相关的全局变量
// 重绘函数
void myDisplay(void)
{
glClear(GL_COLOR_BUFFER_BIT); // 清屏幕
transform_init(&Transform);//初始化摄像头
camera_at_zero(&Transform, CameraPos, 0, 0);
glBegin(GL_POINTS);
DrawBox();
glEnd();
glFlush(); // 将所有输出到显示屏上
}
修改后运行程序可以看到一个正方形,这样不好看,根本不能判断是不是3d,所以我们旋转它
八、旋转立方体
void DrawBox()
{
matrix_t m;
matrix_set_rotate(&m, -1, 1, 1, Alpha);
Transform.world = m;
transform_update(&Transform);
draw_plane( 0, 1, 2, 3);
draw_plane(4, 5, 6, 7);
draw_plane( 0, 4, 5, 1);
draw_plane( 1, 5, 6, 2);
draw_plane( 2, 6, 7, 3);
draw_plane( 3, 7, 4, 0);
}

这样静止不动没意思,我们来控制摄像头来改变我们所看到的立方体吧。
九、键盘控制摄像头
//************************键盘鼠标输入*******************
void myKeyBoard(unsigned char theKey, int MouseX, int MouseY)
{
switch (theKey)
{
case 'w':
CameraPos -= 0.1;
myDisplay();//重绘函数不能实时更新,所以我们需要这样,如果有更好的方法,希望大家告知
break;
case 's':
CameraPos += 0.1;
myDisplay();
break;
case 'a':
Alpha += 0.1;
myDisplay();
break;
case 'd':
Alpha -= 0.1;
myDisplay();
break;
default:
break;
}
}
接下来注册键盘输入事件
void main(int argc, char **argv)
{
glutInit(&argc, argv); // 初始化工具包
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); // 设置显式模式
glutInitWindowSize(SCREEN_WIDTH, SCREEN_HEIGHT); // 设置窗口大小
glutInitWindowPosition(200, 0); // 设置窗口位置
glutCreateWindow(SCREEN_TITLE); // 打开屏幕窗口
glutDisplayFunc(myDisplay); // 注册绘制函数
myInit();
glutKeyboardFunc( myKeyBoard);//注册键盘输入函数
glutMainLoop(); // 进入主循环
}
好了,完成了,大家可以尝试通过a,s,d,w按键控制摄像头,我只是贴了我的代码,矩阵变换3d变换旋转还是建议大家自己推导一下
来自:https://blog.csdn.net/qq_34244317/article/details/78398837
