OpenGL进阶(十一):GLSL4.x中的数据传递
in out
对于 vertex shader,每个顶点都会包含一次,它的主要工作时处理关于定点的数据,然后把结果传递到管线的下个阶段。
以前版本的GLSL,数据会通过一些内建变量,比如gl_Vertex和gl_Normal,但现在,通常时使用通用顶点属性( generic vertex attributes)来提供,通常和一个Buffer object 想关联。对于程序员来说,现在可以自由去定义一些顶点的属性集来提供输入,只要在开头的时候用in关键字来声明就可以了。
还有一种方式就是使用uniform variables。这种变量和属性变量的区别:属性变量是指每个顶点shader调用时,都会根据属性的位置从顶点缓冲中装入该顶点的相应属性值,而uniform变量,则对每个draw调用保持不变,这意味着你在draw调用前装入该变量,然后draw中每个顶点shader执行时,都能访问该变量,而且该变量值会保持不变。它可以声明在一个或者多个shader中,如果时声明在多个shader中,变量的类型必须一致。uniform变量常用来存储一些draw执行时候的常量数据,比如光照参数、变化矩阵、纹理对象句柄等等。
下面是基于GLSL入门的例子的一个修改,通过增加一个uniform的旋转变量,对每个顶点进行旋转一定的角度。
首先是basic.vert:
- #version 400
- layout (location = 0) in vec2 in_Position;
- layout (location = 1) in vec3 in_Color;
- out vec3 ex_Color;
- uniform mat4 RotationMatrix;
- void main(void) {
- gl_Position = RotationMatrix * vec4(in_Position.x, in_Position.y, 0.0, 1.0);
- ex_Color = in_Color;
- }
增加了uniform的4维矩阵变量,存储旋转矩阵。
在main.cpp中修改如下:
首先添加一下头文件,因为要用到glm库。
- #include
- #include
- using glm::mat4;
- using glm::vec3;
然后在renderGL中修改代码如下:
- glUseProgram(programHandle);
- float angle = 30;
- mat4 rotationMatrix = glm::rotate(mat4(1.0f), angle, vec3(0.0f,0.0f,1.0f));
- GLuint location =glGetUniformLocationg(programHandle,"RotationMatrix");
- if( location >= 0 )
- {
- glUniformMatrix4fv(location, 1, GL_FALSE,&rotationMatrix[0][0]);
- }
- //Draw a square
- int i;
- for (i=2; i <=4; i )
- {
- /* Make our background black */
- glClearColor(0.0, 0.0, 0.0, 1.0);
- glClear(GL_COLOR_BUFFER_BIT);
- /* Invoke glDrawArrays telling that our data is a line loop and we want to draw 2-4 vertexes */
- glDrawArrays(GL_TRIANGLE_FAN, 0, i);
- }
- // Unbind shader
- glUseProgram(0);
修改的部分首先是生成选装的矩阵,glGetUniformLocation用于检测是否存在一个变量,然后通过glUniformMatrix4fv来绑定数值,最后在绘制的时候,shader就可以调用uniform数据了。
使用uniform blocks和uniform buffer object
UBO,顾名思义,就是一个装载Uniform变量数据的Buffer Object。就概念而言,它跟VBO之类Buffer Object差不多,反正就是显存中一块用于储存特定数据的区域了。在OpenGL端,它的创建、更新、销毁的方式都与其他Buffer Object没什么区别,我们只不过把一个或多个uniform数据交给它,以替代glUniform的方式传递数据而已。这里必须明确一点,这些数据是给到这个UBO,存储于这个UBO上,而不再是交给ShaderProgram,所以它们不会占用这个ShaderProgram自身的uniform存储空间,所以UBO是一种全新的传递数据的方式,从路径到目的地,都跟传统uniform变量的方式不一样。自然,对于这样的数据,在Shader中不能再使用上面代码中的方式来指涉了。随着UBO的引入,GLSL也引入了uniform block这种指涉工具。
uniform block是Interface block的一种,(layout意义容后再述)在unifom关键字后直接跟随一个block name和大括号,里面是一个或多个uniform变量。一个uniform block可以指涉一个UBO的数据——我们要把block里的uniform变量与OpenGL里的数据建立关联。
还是基于上面的例子进行修改,我们需要达到下面的效果
首先我们重新写一个basic.frag
- #version 400
- in vec3 texCoord;
- layout(location = 0) out vec4 fragColor;
- uniform blobSettings{
- vec4 innerColor;
- vec4 outerColor;
- float radiusInner;
- float radiusOuter;
- };
- void main(void) {
- float dx = abs(texCoord.x) - 0.5;
- float dy = texCoord.y -0.5;
- float dist = sqrt(dx*dx dy*dy);
- fragColor = mix(innerColor, outerColor, smoothstep(radiusInner, radiusOuter, dist));
- }
首先定义texCoord作为从vertex shader的输如,然后fragColor作为输出,对图形对像素进行挨个着色。
basic.vert改变不是很大,增加了一个纹理坐标。
- layout (location = 0) in vec3 inPosition;
- layout (location = 1) in vec3 vertexTextCoord;
- out vec3 texCoord;
- void main(void) {
- texCoord = vertexTextCoord;
- gl_Position = vec4(inPosition, 1.0);
- }
- void initUniformBlockBuffer()
- {
- // Get the index of the uniform block
- GLuint blockIndex = glGetUniformBlockIndex(programHandle, "blobSettings");
- // Allocate space for the buffer
- GLint blockSize;
- glGetActiveUniformBlockiv(programHandle, blockIndex,
- GL_UNIFORM_BLOCK_DATA_SIZE, &blockSize);
- GLubyte * blockBuffer;
- blockBuffer = (GLubyte *) malloc(blockSize);
- // Query for the offsets of each block variable
- const GLchar *names[] = { "innerColor", "outerColor",
- "radiusInner", "radiusOuter" };
- GLuint indices[4];
- glGetUniformIndices(programHandle, 4, names, indices);
- GLint offset[4];
- glGetActiveUniformsiv(programHandle, 4, indices, GL_UNIFORM_OFFSET, offset);
- // Store data within the buffer at the appropriate offsets
- GLfloat outerColor[] = {0.0f, 1.0f, 0.0f, 0.0f};
- GLfloat innerColor[] = {1.0f, 0.0f, 0.75f, 1.0f};
- GLfloat innerRadius = 0.25f, outerRadius = 0.45f;
- memcpy(blockBuffer offset[0], innerColor, 4 * sizeof(GLfloat));
- memcpy(blockBuffer offset[1], outerColor, 4 * sizeof(GLfloat));
- printf("Initsa VSBO!\n");
- memcpy(blockBuffer offset[2], &innerRadius, sizeof(GLfloat));
- memcpy(blockBuffer offset[3], &outerRadius, sizeof(GLfloat));
- // Create the buffer object and copy the data
- GLuint uboHandle;
- glGenBuffers( 1, &uboHandle );
- glBindBuffer( GL_UNIFORM_BUFFER, uboHandle );
- glBufferData( GL_UNIFORM_BUFFER, blockSize, blockBuffer, GL_DYNAMIC_DRAW );
- // Bind the buffer object to the uniform block
- glBindBufferBase( GL_UNIFORM_BUFFER, blockIndex, uboHandle );
- }
shader的初始化函数也要进行一些修改:
- void initShader()
- {
- /* We're going to create a square made from lines */
- const GLfloat positionData[4][3] = {
- { -1.0, 1.0, 0.0 }, /* Top point */
- { 1.0, 1.0, 0.0 }, /* Right point */
- { 1.0, -1.0, 0.0 }, /* Bottom point */
- { -1.0, -1.0, 0.0 } }; /* Left point */
- float tcData[] = {
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 0.0f
- };
- /* These pointers will receive the contents of our shader source code files */
- GLchar *vertexsource, *fragmentsource;
- /* These are handles used to reference the shaders */
- GLuint vertexshader, fragmentshader;
- /* This is a handle to the shader program */
- GLuint shaderprogram;
- /* Allocate and assign a Vertex Array Object to our handle */
- glGenVertexArrays(1, &vao);
- /* Bind our Vertex Array Object as the current used object */
- glBindVertexArray(vao);
- /* Allocate and assign two Vertex Buffer Objects to our handle */
- glGenBuffers(2, vbo);
- /* Bind our first VBO as being the active buffer and storing vertex attributes (coordinates) */
- glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
- glBufferData(GL_ARRAY_BUFFER, 12 * sizeof(GLfloat), positionData, GL_STATIC_DRAW);
- /* Specify that our coordinate data is going into attribute index 0, and contains two floats per vertex */
- glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
- /* Enable attribute index 0 as being used */
- glEnableVertexAttribArray(0);
- /* Bind our second VBO as being the active buffer and storing vertex attributes (colors) */
- glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
- glBufferData(GL_ARRAY_BUFFER, 12 * sizeof(GLfloat), tcData, GL_STATIC_DRAW);
- /* Specify that our color data is going into attribute index 1, and contains three floats per vertex */
- glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, 0);
- /* Enable attribute index 1 as being used */
- glEnableVertexAttribArray(1);
- vShader = glCreateShader( GL_VERTEX_SHADER );
- fShader = glCreateShader( GL_FRAGMENT_SHADER );
- printf("Here\n");
- if(0 == vShader || 0 == fShader)
- {
- fprintf(stderr, "Error creating vertex shader.\n");
- quit(1);
- }
- GLchar* vShaderCode = textFileRead("basic.vert");
- GLchar* fShaderCode = textFileRead("basic.frag");
- const GLchar* vCodeArray[1] = {vShaderCode};
- const GLchar* fCodeArray[1] = {fShaderCode};
- glShaderSource(vShader, 1, vCodeArray, NULL);
- glShaderSource(fShader, 1, fCodeArray, NULL);
- glCompileShader(vShader);
- glCompileShader(fShader);
- free(vShaderCode);
- free(fShaderCode);
- GLint result;
- glGetShaderiv( vShader, GL_COMPILE_STATUS, &result );
- if( GL_FALSE == result )
- {
- fprintf( stderr, "Vertex shader compilation failed!\n" );
- GLint logLen;
- glGetShaderiv( vShader, GL_INFO_LOG_LENGTH, &logLen );
- if( logLen > 0 )
- {
- char * log = (char *)malloc(logLen);
- GLsizei written;
- glGetShaderInfoLog(vShader, logLen, &written, log);
- fprintf(stderr, "Shader log:\n%s", log);
- free(log);
- }
- }
- programHandle = glCreateProgram();
- if(0 == programHandle)
- {
- fprintf(stderr, "Error creating programHandle.\n");
- quit(1);
- }
- glAttachShader(programHandle, vShader);
- glAttachShader(programHandle, fShader);
- glBindAttribLocation(programHandle, 0, "in_Position");
- glBindAttribLocation(programHandle, 1, "in_Color");
- glLinkProgram(programHandle);
- }
渲染的时候直接画一个正方形就可以了。
- glUseProgram(programHandle);
- glDrawArrays(GL_QUADS,0,4);
- glUseProgram(0);
编译命令
g main.c -o main -l SDL -lGL -lGLU -lglut -lGLEW
*shader调试的一点小技巧
由于没办法在shader使用打印语句,所以shader调试起来会有点麻烦,我们可以用glGet方法来获取一些状态变量来判断shder的状态,更常用的是改变shader的代码,然后利用渲染的结果来进行调试。比如:
- void main(){
- float bug=0.0;
- vec3 tile=texture2D(colMap, coords.st).xyz;
- vec4 col=vec4(tile, 1.0);
- if(something) bug=1.0;
- col.x =bug;
- gl_FragColor=col;
- }
写一个C 的shader类
首先需要升级一下系统的glew库,老版本的glew4.x的很多特性都不支持。
去http://glew.sourceforge.net/下载最新的1.10版,解压cd进目录,运行:
make
sudo make install
GLSL的基本的知识到现在已经接触得差不多了,接下来为了更方便的学习,现在把shader封装成一个class, 加入到之前的框架。
代码就不贴了,点我去下载。