WebGL入门教程(十一)透视投影
发表于2017-12-12
这篇文章和大家介绍下透视投影,与正射投影不同,透视投影会出近大远小的效果,与人的视觉效果一直,游戏中一般都是使用的透视投影。
示例:
/** * 透视投影矩阵 * xu.lidong@qq.com * */ var g_vs = ` attribute vec4 a_Position; attribute vec4 a_Color; uniform mat4 u_ViewMat; uniform mat4 u_ProjMat; varying vec4 v_Color; void main() { gl_Position = u_ProjMat * u_ViewMat * a_Position; v_Color = a_Color; }`; var g_fs = ` precision mediump float; varying vec4 v_Color; void main(){ gl_FragColor = v_Color; }`; function main() { var gl = getGL(); var shaderProgram = initShader(gl); var n = initVertexBuffers(gl, shaderProgram); draw(gl, shaderProgram, n); } function getGL() { var canvas = document.getElementById("container"); return canvas.getContext("webgl") || canvas.getContext("experimental-webgl"); } function initShader(gl) { var vs = gl.createShader(gl.VERTEX_SHADER); gl.shaderSource( vs, g_vs); gl.compileShader(vs); var fs = gl.createShader(gl.FRAGMENT_SHADER); gl.shaderSource( fs, g_fs); gl.compileShader(fs); var shaderProgram = gl.createProgram(); gl.attachShader(shaderProgram, vs); gl.attachShader(shaderProgram, fs); gl.linkProgram(shaderProgram); gl.useProgram(shaderProgram); return shaderProgram; } function initVertexBuffers(gl, shaderProgram) { var verticesColors = new Float32Array([ 0.75, 1.0, -4.0, 0.4, 1.0, 0.4, 0.25, -1.0, -4.0, 0.4, 1.0, 0.4, 1.25, -1.0, -4.0, 1.0, 0.4, 0.4, 0.75, 1.0, -2.0, 1.0, 1.0, 0.4, 0.25, -1.0, -2.0, 1.0, 1.0, 0.4, 1.25, -1.0, -2.0, 1.0, 0.4, 0.4, 0.75, 1.0, 0.0, 0.4, 0.4, 1.0, 0.25, -1.0, 0.0, 0.4, 0.4, 1.0, 1.25, -1.0, 0.0, 1.0, 0.4, 0.4, -0.75, 1.0, -4.0, 0.4, 1.0, 0.4, -1.25, -1.0, -4.0, 0.4, 1.0, 0.4, -0.25, -1.0, -4.0, 1.0, 0.4, 0.4, -0.75, 1.0, -2.0, 1.0, 1.0, 0.4, -1.25, -1.0, -2.0, 1.0, 1.0, 0.4, -0.25, -1.0, -2.0, 1.0, 0.4, 0.4, -0.75, 1.0, 0.0, 0.4, 0.4, 1.0, -1.25, -1.0, 0.0, 0.4, 0.4, 1.0, -0.25, -1.0, 0.0, 1.0, 0.4, 0.4, ]); var FSIZE = verticesColors.BYTES_PER_ELEMENT; var vertexColorBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer); gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW); var a_Position = gl.getAttribLocation(shaderProgram, "a_Position"); gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, FSIZE * 6, 0); gl.enableVertexAttribArray(a_Position); var a_Color = gl.getAttribLocation(shaderProgram, "a_Color"); gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 6, FSIZE * 3); gl.enableVertexAttribArray(a_Color); return verticesColors.length / 6; } function draw(gl, shaderProgram, n) { var u_ProjMat = gl.getUniformLocation(shaderProgram, "u_ProjMat"); var projMat = getPerspectiveProjection(60, 1280/720, 1, 100); gl.uniformMatrix4fv(u_ProjMat, false, projMat); var u_ViewMat = gl.getUniformLocation(shaderProgram, "u_ViewMat"); var viewMat = lookAt(0, 0, 6, 0, 0, -100, 0, 1, 0); gl.uniformMatrix4fv(u_ViewMat, false, viewMat); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.clear(gl.COLOR_BUFFER_BIT); gl.drawArrays(gl.TRIANGLES, 0, n); } function getPerspectiveProjection(fov, aspect, near, far) { var fovy = Math.PI * fov / 180 / 2; var s = Math.sin(fovy); var rd = 1 / (far - near); var ct = Math.cos(fovy) / s; return new Float32Array([ ct / aspect, 0, 0, 0, 0, ct, 0, 0, 0, 0, -(far + near) * rd, -1, 0, 0, -2 * near * far * rd, 0, ]); } /** * 以下代码为lookAt的实现 * */ /** * 由平移向量获取平移矩阵 * */ function getTranslationMatrix(x, y, z) { return new Float32Array([ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, x, y, z, 1.0, ]); } /** * 由旋转弧度和旋转轴获取旋转矩阵 * */ function getRotationMatrix(rad, x, y, z) { if (x > 0) { // 绕x轴的旋转矩阵 return new Float32Array([ 1.0, 0.0, 0.0, 0.0, 0.0, Math.cos(rad), -Math.sin(rad), 0.0, 0.0, Math.sin(rad), Math.cos(rad), 0.0, 0.0, 0.0, 0.0, 1.0, ]); } else if (y > 0) { // 绕y轴的旋转矩阵 return new Float32Array([ Math.cos(rad), 0.0, -Math.sin(rad), 0.0, 0.0, 1.0, 0.0, 0.0, Math.sin(rad), 0.0, Math.cos(rad), 0.0, 0.0, 0.0, 0.0, 1.0, ]); } else if(z > 0) { // 绕z轴的旋转矩阵 return new Float32Array([ Math.cos(rad), Math.sin(rad), 0.0, 0.0, -Math.sin(rad), Math.cos(rad), 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, ]); } else { // 没有指定旋转轴,报个错,返回一个单位矩阵 console.error("error: no axis"); return new Float32Array([ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, ]); } } /** * 视图矩阵 * */ function lookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) { var zAxis = subVector([centerX, centerY, centerZ], [eyeX, eyeY, eyeZ]); var N = normalizeVector(zAxis); var xAxis = crossMultiVector(N, [upX, upY, upZ]); var U = normalizeVector(xAxis); var V = crossMultiVector(U, N); // 旋转的逆矩阵 var r = new Float32Array([ U[0], V[0], -N[0], 0, U[1], V[1], -N[1], 0, U[2], V[2], -N[2], 0, 0, 0, 0, 1 ]); // 平移的逆矩阵 var t = getTranslationMatrix(-eyeX, -eyeY, -eyeZ); return multiMatrix44(r, t); } /** * 由缩放因子获取缩放矩阵 * */ function getScaleMatrix(xScale, yScale, zScale) { return new Float32Array([ xScale, 0.0, 0.0, 0.0, 0.0, yScale, 0.0, 0.0, 0.0, 0.0, zScale, 0.0, 0.0, 0.0, 0.0, 1.0, ]); } /** * 向量点乘 * */ function dotMultiVector(v1, v2) { var res = 0; for (var i = 0; i < v1.length; i++) { res += v1[i] * v2[i]; } return res; } /** * 向量叉乘 * */ function crossMultiVector(v1, v2) { return [ v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0] ]; } /** * 向量减法 * */ function subVector(v1, v2){ return [v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]]; } /** * 向量加法 * */ function addVector(v1, v2){ return [v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]]; } /** * 向量归一化 * */ function normalizeVector(v) { var len = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); return (len > 0.00001) ? [v[0]/len, v[1]/len, v[2]/len] : [0, 0, 0]; } /** * 4 x 4 矩阵的转置 * */ function transposeMatrix(mat) { var res = new Float32Array(16); for (var i = 0; i < 4; i++) { for (var j = 0; j < 4; j++) { res[i * 4 + j] = mat[j * 4 + i]; } } return res; } /** * 4 x 4 矩阵乘法 * */ function multiMatrix44(m1, m2) { var mat1 = transposeMatrix(m1); var mat2 = transposeMatrix(m2); var res = new Float32Array(16); for (var i = 0; i < 4; i++) { var row = [mat1[i * 4], mat1[i * 4 + 1], mat1[i * 4 + 2], mat1[i * 4 + 3]]; for (var j = 0; j < 4; j++) { var col = [mat2[j], mat2[j + 4], mat2[j + 8], mat2[j + 12]]; res[i * 4 + j] = dotMultiVector(row, col); } } return transposeMatrix(res); }
上列中,前后绘制了分三排绘制了9个三角形,可以看到,距离视点越远的三角形越小,如图:
从图中可以看到,遮挡关系是不正确的,前面的物品被后面的遮挡住了,修改draw函数如下:
function draw(gl, shaderProgram, n) { var u_ProjMat = gl.getUniformLocation(shaderProgram, "u_ProjMat"); var projMat = getPerspectiveProjection(60, 1280/720, 1, 100); gl.uniformMatrix4fv(u_ProjMat, false, projMat); var u_ViewMat = gl.getUniformLocation(shaderProgram, "u_ViewMat"); var viewMat = lookAt(0, 0, 6, 0, 0, -100, 0, 1, 0); gl.uniformMatrix4fv(u_ViewMat, false, viewMat); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.enable(gl.DEPTH_TEST);// 开启深度测试 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);// 增加清空深度缓冲区 gl.drawArrays(gl.TRIANGLES, 0, n); }
然后就正确了,如图: