NDK的OpenGLes2.0 官方例子解析
提要
NDK自带了一个OpenGLes的例子,下面就一起来学习一下。
环境:Ubuntu14.04 NDK r10 ADT13.02 Android Native Development Tools 8.12
注:在ubuntu的adt需要手动安装Android Native Development Tools才能很好的支持NDK。
如果你对Java调用C/C 的代码还不了解,可以参考:JNI原理及实现 利用JNI进行对象操作
如果你对NDK还不了解,可以参考:Android的NDK开发(1)-不一样的HelloWorld
如果你对NDK下的OpenGL es 编程不了解,可以参考:Android的NDK开发(2)-基于NDK的OpenGL开发
加载项目
File -> Import -> Existing Android Code Into Workspace
定位到ndk的目录,samples -> hello-gl2,加载就可以了。加载好之后目录的结构是像这样的:
Java的代码主要aom.android.gl2jni目录下面,C 的代码主要就在jni目录,obj目录是ndk编译产生的一些文件,libs下面是ndk交叉编译出的各个版本cpu所使用的库版本。
运行结果非常简单,中间一个三角形,背景从白到黑不断变换。
代码分析
首先来看下java的代码
GL2JNILib.java
- public class GL2JNILib {
- static {
- System.loadLibrary("gl2jni");
- }
- /**
- * @param width the current view width
- * @param height the current view height
- */
- public static native void init(int width, int height);
- public static native void step();
- }
这个类作为Java和C 的桥,用System.loadLibrary()方法来加载C 的库,接着声明一些C 实现好的一些静态公有方法。算是一种小小的封装吧。
GL2JNIView.java
- class GL2JNIView extends GLSurfaceView {
- private static String TAG = "GL2JNIView";
- private static final boolean DEBUG = false;
- public GL2JNIView(Context context) {
- super(context);
- init(false, 0, 0);
- }
- public GL2JNIView(Context context, boolean translucent, int depth, int stencil) {
- super(context);
- init(translucent, depth, stencil);
- }
- private void init(boolean translucent, int depth, int stencil) {
- /* By default, GLSurfaceView() creates a RGB_565 opaque surface.
- * If we want a translucent one, we should change the surface's
- * format here, using PixelFormat.TRANSLUCENT for GL Surfaces
- * is interpreted as any 32-bit surface with alpha by SurfaceFlinger.
- */
- if (translucent) {
- this.getHolder().setFormat(PixelFormat.TRANSLUCENT);
- }
- /* Setup the context factory for 2.0 rendering.
- * See ContextFactory class definition below
- */
- setEGLContextFactory(new ContextFactory());
- /* We need to choose an EGLConfig that matches the format of
- * our surface exactly. This is going to be done in our
- * custom config chooser. See ConfigChooser class definition
- * below.
- */
- setEGLConfigChooser( translucent ?
- new ConfigChooser(8, 8, 8, 8, depth, stencil) :
- new ConfigChooser(5, 6, 5, 0, depth, stencil) );
- /* Set the renderer responsible for frame rendering */
- setRenderer(new Renderer());
- }
- private static class ContextFactory implements GLSurfaceView.EGLContextFactory {
- private static int EGL_CONTEXT_CLIENT_VERSION = 0x3098;
- public EGLContext createContext(EGL10 egl, EGLDisplay display, EGLConfig eglConfig) {
- Log.w(TAG, "creating OpenGL ES 2.0 context");
- checkEglError("Before eglCreateContext", egl);
- int[] attrib_list = {EGL_CONTEXT_CLIENT_VERSION, 2, EGL10.EGL_NONE };
- EGLContext context = egl.eglCreateContext(display, eglConfig, EGL10.EGL_NO_CONTEXT, attrib_list);
- checkEglError("After eglCreateContext", egl);
- return context;
- }
- public void destroyContext(EGL10 egl, EGLDisplay display, EGLContext context) {
- egl.eglDestroyContext(display, context);
- }
- }
- private static void checkEglError(String prompt, EGL10 egl) {
- int error;
- while ((error = egl.eglGetError()) != EGL10.EGL_SUCCESS) {
- Log.e(TAG, String.format("%s: EGL error: 0x%x", prompt, error));
- }
- }
- private static class ConfigChooser implements GLSurfaceView.EGLConfigChooser {
- public ConfigChooser(int r, int g, int b, int a, int depth, int stencil) {
- mRedSize = r;
- mGreenSize = g;
- mBlueSize = b;
- mAlphaSize = a;
- mDepthSize = depth;
- mStencilSize = stencil;
- }
- /* This EGL config specification is used to specify 2.0 rendering.
- * We use a minimum size of 4 bits for red/green/blue, but will
- * perform actual matching in chooseConfig() below.
- */
- private static int EGL_OPENGL_ES2_BIT = 4;
- private static int[] s_configAttribs2 =
- {
- EGL10.EGL_RED_SIZE, 4,
- EGL10.EGL_GREEN_SIZE, 4,
- EGL10.EGL_BLUE_SIZE, 4,
- EGL10.EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
- EGL10.EGL_NONE
- };
- public EGLConfig chooseConfig(EGL10 egl, EGLDisplay display) {
- /* Get the number of minimally matching EGL configurations
- */
- int[] num_config = new int[1];
- egl.eglChooseConfig(display, s_configAttribs2, null, 0, num_config);
- int numConfigs = num_config[0];
- if (numConfigs <= 0) {
- throw new IllegalArgumentException("No configs match configSpec");
- }
- /* Allocate then read the array of minimally matching EGL configs
- */
- EGLConfig[] configs = new EGLConfig[numConfigs];
- egl.eglChooseConfig(display, s_configAttribs2, configs, numConfigs, num_config);
- if (DEBUG) {
- printConfigs(egl, display, configs);
- }
- /* Now return the "best" one
- */
- return chooseConfig(egl, display, configs);
- }
- public EGLConfig chooseConfig(EGL10 egl, EGLDisplay display,
- EGLConfig[] configs) {
- for(EGLConfig config : configs) {
- int d = findConfigAttrib(egl, display, config,
- EGL10.EGL_DEPTH_SIZE, 0);
- int s = findConfigAttrib(egl, display, config,
- EGL10.EGL_STENCIL_SIZE, 0);
- // We need at least mDepthSize and mStencilSize bits
- if (d < mDepthSize || s < mStencilSize)
- continue;
- // We want an *exact* match for red/green/blue/alpha
- int r = findConfigAttrib(egl, display, config,
- EGL10.EGL_RED_SIZE, 0);
- int g = findConfigAttrib(egl, display, config,
- EGL10.EGL_GREEN_SIZE, 0);
- int b = findConfigAttrib(egl, display, config,
- EGL10.EGL_BLUE_SIZE, 0);
- int a = findConfigAttrib(egl, display, config,
- EGL10.EGL_ALPHA_SIZE, 0);
- if (r == mRedSize && g == mGreenSize && b == mBlueSize && a == mAlphaSize)
- return config;
- }
- return null;
- }
- private int findConfigAttrib(EGL10 egl, EGLDisplay display,
- EGLConfig config, int attribute, int defaultValue) {
- if (egl.eglGetConfigAttrib(display, config, attribute, mValue)) {
- return mValue[0];
- }
- return defaultValue;
- }
- private void printConfigs(EGL10 egl, EGLDisplay display,
- EGLConfig[] configs) {
- int numConfigs = configs.length;
- Log.w(TAG, String.format("%d configurations", numConfigs));
- for (int i = 0; i < numConfigs; i ) {
- Log.w(TAG, String.format("Configuration %d:\n", i));
- printConfig(egl, display, configs[i]);
- }
- }
- private void printConfig(EGL10 egl, EGLDisplay display,
- EGLConfig config) {
- int[] attributes = {
- EGL10.EGL_BUFFER_SIZE,
- EGL10.EGL_ALPHA_SIZE,
- EGL10.EGL_BLUE_SIZE,
- EGL10.EGL_GREEN_SIZE,
- EGL10.EGL_RED_SIZE,
- EGL10.EGL_DEPTH_SIZE,
- EGL10.EGL_STENCIL_SIZE,
- EGL10.EGL_CONFIG_CAVEAT,
- EGL10.EGL_CONFIG_ID,
- EGL10.EGL_LEVEL,
- EGL10.EGL_MAX_PBUFFER_HEIGHT,
- EGL10.EGL_MAX_PBUFFER_PIXELS,
- EGL10.EGL_MAX_PBUFFER_WIDTH,
- EGL10.EGL_NATIVE_RENDERABLE,
- EGL10.EGL_NATIVE_VISUAL_ID,
- EGL10.EGL_NATIVE_VISUAL_TYPE,
- 0x3030, // EGL10.EGL_PRESERVED_RESOURCES,
- EGL10.EGL_SAMPLES,
- EGL10.EGL_SAMPLE_BUFFERS,
- EGL10.EGL_SURFACE_TYPE,
- EGL10.EGL_TRANSPARENT_TYPE,
- EGL10.EGL_TRANSPARENT_RED_VALUE,
- EGL10.EGL_TRANSPARENT_GREEN_VALUE,
- EGL10.EGL_TRANSPARENT_BLUE_VALUE,
- 0x3039, // EGL10.EGL_BIND_TO_TEXTURE_RGB,
- 0x303A, // EGL10.EGL_BIND_TO_TEXTURE_RGBA,
- 0x303B, // EGL10.EGL_MIN_SWAP_INTERVAL,
- 0x303C, // EGL10.EGL_MAX_SWAP_INTERVAL,
- EGL10.EGL_LUMINANCE_SIZE,
- EGL10.EGL_ALPHA_MASK_SIZE,
- EGL10.EGL_COLOR_BUFFER_TYPE,
- EGL10.EGL_RENDERABLE_TYPE,
- 0x3042 // EGL10.EGL_CONFORMANT
- };
- String[] names = {
- "EGL_BUFFER_SIZE",
- "EGL_ALPHA_SIZE",
- "EGL_BLUE_SIZE",
- "EGL_GREEN_SIZE",
- "EGL_RED_SIZE",
- "EGL_DEPTH_SIZE",
- "EGL_STENCIL_SIZE",
- "EGL_CONFIG_CAVEAT",
- "EGL_CONFIG_ID",
- "EGL_LEVEL",
- "EGL_MAX_PBUFFER_HEIGHT",
- "EGL_MAX_PBUFFER_PIXELS",
- "EGL_MAX_PBUFFER_WIDTH",
- "EGL_NATIVE_RENDERABLE",
- "EGL_NATIVE_VISUAL_ID",
- "EGL_NATIVE_VISUAL_TYPE",
- "EGL_PRESERVED_RESOURCES",
- "EGL_SAMPLES",
- "EGL_SAMPLE_BUFFERS",
- "EGL_SURFACE_TYPE",
- "EGL_TRANSPARENT_TYPE",
- "EGL_TRANSPARENT_RED_VALUE",
- "EGL_TRANSPARENT_GREEN_VALUE",
- "EGL_TRANSPARENT_BLUE_VALUE",
- "EGL_BIND_TO_TEXTURE_RGB",
- "EGL_BIND_TO_TEXTURE_RGBA",
- "EGL_MIN_SWAP_INTERVAL",
- "EGL_MAX_SWAP_INTERVAL",
- "EGL_LUMINANCE_SIZE",
- "EGL_ALPHA_MASK_SIZE",
- "EGL_COLOR_BUFFER_TYPE",
- "EGL_RENDERABLE_TYPE",
- "EGL_CONFORMANT"
- };
- int[] value = new int[1];
- for (int i = 0; i < attributes.length; i ) {
- int attribute = attributes[i];
- String name = names[i];
- if ( egl.eglGetConfigAttrib(display, config, attribute, value)) {
- Log.w(TAG, String.format(" %s: %d\n", name, value[0]));
- } else {
- // Log.w(TAG, String.format(" %s: failed\n", name));
- while (egl.eglGetError() != EGL10.EGL_SUCCESS);
- }
- }
- }
- // Subclasses can adjust these values:
- protected int mRedSize;
- protected int mGreenSize;
- protected int mBlueSize;
- protected int mAlphaSize;
- protected int mDepthSize;
- protected int mStencilSize;
- private int[] mValue = new int[1];
- }
- private static class Renderer implements GLSurfaceView.Renderer {
- public void onDrawFrame(GL10 gl) {
- GL2JNILib.step();
- }
- public void onSurfaceChanged(GL10 gl, int width, int height) {
- GL2JNILib.init(width, height);
- }
- public void onSurfaceCreated(GL10 gl, EGLConfig config) {
- // Do nothing.
- }
- }
- }
这个类自定义了一个SurfaceView,作为Activity的content,定义了一个Renderer用于渲染内容,分别实现了Render的onDrawFrame和onSurfaceChanged方法,这里就直接调用GL2JNILib的静态共有方法了。
还定义了两个类,一个ContextFactory,用与生成OpenGL的Context。
一个ConfigChooser,用于选定支持es 2.0 的EGLConfig。
感觉这几个类分开写一下会更清晰一些。
GL2JNIActivity.java
- public class GL2JNIActivity extends Activity {
- GL2JNIView mView;
- @Override protected void onCreate(Bundle icicle) {
- super.onCreate(icicle);
- mView = new GL2JNIView(getApplication());
- setContentView(mView);
- }
- @Override protected void onPause() {
- super.onPause();
- mView.onPause();
- }
- @Override protected void onResume() {
- super.onResume();
- mView.onResume();
- }
- }
JNI方面,主要看gl_code.cpp就好了。
- // OpenGL ES 2.0 code
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #define LOG_TAG "libgl2jni"
- #define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
- #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)
- static void printGLString(const char *name, GLenum s) {
- const char *v = (const char *) glGetString(s);
- LOGI("GL %s = %s\n", name, v);
- }
- static void checkGlError(const char* op) {
- for (GLint error = glGetError(); error; error
- = glGetError()) {
- LOGI("after %s() glError (0x%x)\n", op, error);
- }
- }
- static const char gVertexShader[] =
- "attribute vec4 vPosition;\n"
- "void main() {\n"
- " gl_Position = vPosition;\n"
- "}\n";
- static const char gFragmentShader[] =
- "precision mediump float;\n"
- "void main() {\n"
- " gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
- "}\n";
- GLuint loadShader(GLenum shaderType, const char* pSource) {
- GLuint shader = glCreateShader(shaderType);
- if (shader) {
- glShaderSource(shader, 1, &pSource, NULL);
- glCompileShader(shader);
- GLint compiled = 0;
- glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
- if (!compiled) {
- GLint infoLen = 0;
- glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);
- if (infoLen) {
- char* buf = (char*) malloc(infoLen);
- if (buf) {
- glGetShaderInfoLog(shader, infoLen, NULL, buf);
- LOGE("Could not compile shader %d:\n%s\n",
- shaderType, buf);
- free(buf);
- }
- glDeleteShader(shader);
- shader = 0;
- }
- }
- }
- return shader;
- }
- GLuint createProgram(const char* pVertexSource, const char* pFragmentSource) {
- GLuint vertexShader = loadShader(GL_VERTEX_SHADER, pVertexSource);
- if (!vertexShader) {
- return 0;
- }
- GLuint pixelShader = loadShader(GL_FRAGMENT_SHADER, pFragmentSource);
- if (!pixelShader) {
- return 0;
- }
- GLuint program = glCreateProgram();
- if (program) {
- glAttachShader(program, vertexShader);
- checkGlError("glAttachShader");
- glAttachShader(program, pixelShader);
- checkGlError("glAttachShader");
- glLinkProgram(program);
- GLint linkStatus = GL_FALSE;
- glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
- if (linkStatus != GL_TRUE) {
- GLint bufLength = 0;
- glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength);
- if (bufLength) {
- char* buf = (char*) malloc(bufLength);
- if (buf) {
- glGetProgramInfoLog(program, bufLength, NULL, buf);
- LOGE("Could not link program:\n%s\n", buf);
- free(buf);
- }
- }
- glDeleteProgram(program);
- program = 0;
- }
- }
- return program;
- }
- GLuint gProgram;
- GLuint gvPositionHandle;
- bool setupGraphics(int w, int h) {
- printGLString("Version", GL_VERSION);
- printGLString("Vendor", GL_VENDOR);
- printGLString("Renderer", GL_RENDERER);
- printGLString("Extensions", GL_EXTENSIONS);
- LOGI("setupGraphics(%d, %d)", w, h);
- gProgram = createProgram(gVertexShader, gFragmentShader);
- if (!gProgram) {
- LOGE("Could not create program.");
- return false;
- }
- gvPositionHandle = glGetAttribLocation(gProgram, "vPosition");
- checkGlError("glGetAttribLocation");
- LOGI("glGetAttribLocation(\"vPosition\") = %d\n",
- gvPositionHandle);
- glViewport(0, 0, w, h);
- checkGlError("glViewport");
- return true;
- }
- const GLfloat gTriangleVertices[] = { 0.0f, 0.5f, -0.5f, -0.5f,
- 0.5f, -0.5f };
- void renderFrame() {
- static float grey;
- grey = 0.01f;
- if (grey > 1.0f) {
- grey = 0.0f;
- }
- glClearColor(grey, grey, grey, 1.0f);
- checkGlError("glClearColor");
- glClear( GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
- checkGlError("glClear");
- glUseProgram(gProgram);
- checkGlError("glUseProgram");
- glVertexAttribPointer(gvPositionHandle, 2, GL_FLOAT, GL_FALSE, 0, gTriangleVertices);
- checkGlError("glVertexAttribPointer");
- glEnableVertexAttribArray(gvPositionHandle);
- checkGlError("glEnableVertexAttribArray");
- glDrawArrays(GL_TRIANGLES, 0, 3);
- checkGlError("glDrawArrays");
- }
- extern "C" {
- JNIEXPORT void JNICALL Java_com_android_gl2jni_GL2JNILib_init(JNIEnv * env, jobject obj, jint width, jint height);
- JNIEXPORT void JNICALL Java_com_android_gl2jni_GL2JNILib_step(JNIEnv * env, jobject obj);
- };
- JNIEXPORT void JNICALL Java_com_android_gl2jni_GL2JNILib_init(JNIEnv * env, jobject obj, jint width, jint height)
- {
- setupGraphics(width, height);
- }
- JNIEXPORT void JNICALL Java_com_android_gl2jni_GL2JNILib_step(JNIEnv * env, jobject obj)
- {
- renderFrame();
- }
首先说几个C 的几个关键字的用法。
全局static变量与static函数
在全局变量之前加上关键字static,全局变量就被定义成为一个全局静态变量。
1)内存中的位置:静态存储区(静态存储区在整个程序运行期间都存在)
2)初始化:未经初始化的全局静态变量会被程序自动初始化为0(自动对象的值是任意的,除非他被显示初始化)
3)作用域:全局静态变量在声明他的文件之外是不可见的。准确地讲从定义之处开始到文件结尾。
好处:
定义全局静态变量的好处:
1)不会被其他文件所访问,修改
2)其他文件中可以使用相同名字的变量,不会发生冲突。
静态函数
在函数的返回类型前加上关键字static,函数就被定义成为静态函数。
函数的定义和声明默认情况下是extern的,但静态函数只是在声明他的文件当中可见,不能被其他文件所用。
定义静态函数的好处:
<1> 其他文件中可以定义相同名字的函数,不会发生冲突
<2> 静态函数不能被其他文件所用。
extern "C" 的用法
被extern "C"修饰的变量和函数是按照C语言方式编译和连接的;实现C 与C及其它语言的混合编程。
而在C语言的头文件中,对其外部函数只能指定为extern类型,C语言中不支持extern "C"声明,在.c文件中包含了extern "C"时会出现编译语法错误。
如果C 调用一个C语言编写的.DLL时,当包括.DLL的头文件或声明接口函数时,应加extern "C" { }。
在这里用 extern "C"框住两个函数,主要是让Jni来调用它们。
代码分析
首先是在c 代码中打tag的方法。
- #include
- #define LOG_TAG "libgl2jni"
- #define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
- #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)
- static void printGLString(const char *name, GLenum s) {
- const char *v = (const char *) glGetString(s);
- LOGI("GL %s = %s\n", name, v);
- }
首先先是包含头log.h文件,
接下来是将自带的log函数用用预定义的方法简化一下。
printGLString等于是又封装了一层,同时可以打印gl的信息。
checkGlError用于检查OpenGL内部发生的错误,OpenGL在运行过程中所产生的错误都可以用glGetError来获得。
vertext shader和fregment shader的内容还有三角形的顶点位置都用已经在程序中写死。如果想加载外部的shader的话,要么在ndk中实现文件的读写,要么就在用java读取,然后传到C里面来处理。
shader相关的流水线可以参考 - GLSL入门
setupGraphics用于shader的一些初始化,还有context的一些初始化。
renderframe非常简单,就是渲染三角形,改变背景颜色,不断刷新。
http://blog.csdn.net/silangquan/article/details/39228203