DirectX 3D编程入门教程(二)
本篇文章主要给大家介绍DirectX 3D编程入门教程系列,该教程适用于一些刚刚涉及DirectX 3D编程的朋友,可以让大家快速掌握,下面开始介绍第二篇。
提要
前几天很简单地跑了一个DirectX 9 程序,以为DirectX就那么绘制,事实证明有点Naive了。
之前的那个程序最多也就是个固定流水线的东西。但是今天要用DirectX11来写一个小的框架。
龙书就不要看了,看Introduction to 3D GAME PROGRAMMING WITH DIRECTX®11
几个重要的类
ID3D11Device : 一个虚拟适配器;它被用于运行渲染和创建资源。
ID3D11DeviceContext: represents a device context which generates rendering commands.
ID3D11RenderTargetView: identifies the render-target subresources that can be accessed during rendering.
ID3D11InputLayout: An input-layout interface holds a definition of how to feed vertex data that is laid out in memory into the input-assembler stage of the graphics pipeline.
渲染流水线(翻译自微软文档)
DirectX编程流水线是为了实时游戏应用设计的,上图显示了由输入到输出的各个阶段的数据流向。相对于DirectX10 的图形流水线,DirectX11添加了一些额外的Stage来支持一些新的特性。
你可以使用DirectX 11API来配置所有的Stage,通过HLSL语言来设置就可以了,这样整个流水线就拥有非常大的可扩展性和适应性了。下面列出每个阶段所做的事情.
Input-Assembler Stage : 提供渲染时的数据(三角形,线,点);
Vertex-Shader Stage:处理顶点,通常的操作有:Transformmation,蒙皮,光照计算。通常一个VertexShader输入是一组顶点,输出也是一组顶点。
Geometry-Shader Statge:这个阶段会处理所有的图元,输入是完整的图元(三角形就是三个顶点,线段就是两个顶点,还有就是单个的点)。另外,每个图元可以包含邻接图元的信息。另外这个阶段还可以对图元进行一定的简化和精细化。给定一个图元,geometry shader可以丢弃这个图元,或者可以生成新的一个或者多个的图元。
Stream-Output Stage: 从上一个阶段流下来的数据,可以将图元信息从流水线放入到存储中,或者放到Rasterizer阶段。被放到内存中的数据可以再次放到流水线中,或者被CPU读取。
Rasterizer Stage:裁剪图元,为pixel shader准备图元,并准备怎样调用pixel shader.
Pixel-Shader Stage: 收到经过插值的结果,生成最终的图像。
Output-Merger Stage :合并各种类型的输出信息(pixel shader 值,深度信息,Stencil值),并和当前render target的深度/Stencil 缓存,得到最后的流水线结果。
Tessellation stage:这个阶段由Hull-shader, tessellator还有domain-shader组成,它主要是将高阶表面转换成一系列的三角行,然后放到流水线中。
Direct3D 11 可编程流水线也可以用高速的计算任务,一个compute shader可以将Direct3D11扩展用于通用GPU计算。
用Shader绘制一个三角形
Direct3D,我们需要完成以下几个步骤:
1.定义我们需要检查的设备类型(device types)和特征级别(feature levels)
2.创建Direct3D设备,渲染设备(context)和交换链(swap chain)。
3.创建渲染目标(render target)。
4.设置视口(viewport)
5.开始渲染
6.渲染模型
7.清屏幕
代码清单
- // include the basic windows header files and the Direct3D header files
- #include
- #include
- #include
- #include
- #include
- #include "assimpmodel.h"
- // include the Direct3D Library file
- #pragma comment (lib, "d3d11.lib")
- #pragma comment (lib, "d3dx11.lib")
- #pragma comment (lib, "d3dx10.lib")
- // define the screen resolution
- #define SCREEN_WIDTH 800
- #define SCREEN_HEIGHT 600
- // global declarations
- IDXGISwapChain *swapchain; // the pointer to the swap chain interface
- ID3D11Device *dev; // the pointer to our Direct3D device interface
- ID3D11DeviceContext *devcon; // the pointer to our Direct3D device context
- ID3D11RenderTargetView *backbuffer; // the pointer to our back buffer
- ID3D11InputLayout *pLayout; // the pointer to the input layout
- ID3D11VertexShader *pVS; // the pointer to the vertex shader
- ID3D11PixelShader *pPS; // the pointer to the pixel shader
- ID3D11Buffer *pVBuffer; // the pointer to the vertex buffer
- // a struct to define a single vertex
- struct VERTEX{ D3DXVECTOR3 position; D3DXCOLOR Color; };
- // function prototypes
- void InitD3D(HWND hWnd); // sets up and initializes Direct3D
- void RenderFrame(void); // renders a single frame
- void CleanD3D(void); // closes Direct3D and releases memory
- void InitGraphics(void); // creates the shape to render
- void InitPipeline(void); // loads and prepares the shaders
- // the WindowProc function prototype
- LRESULT CALLBACK WindowProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam);
- // the entry point for any Windows program
- int WINAPI WinMain(HINSTANCE hInstance,
- HINSTANCE hPrevInstance,
- LPSTR lpCmdLine,
- int nCmdShow)
- {
- HWND hWnd;
- WNDCLASSEX wc;
- ZeroMemory(&wc, sizeof(WNDCLASSEX));
- wc.cbSize = sizeof(WNDCLASSEX);
- wc.style = CS_HREDRAW | CS_VREDRAW;
- wc.lpfnWndProc = WindowProc;
- wc.hInstance = hInstance;
- wc.hCursor = LoadCursor(NULL, IDC_ARROW);
- wc.lpszClassName = "WindowClass";
- RegisterClassEx(&wc);
- RECT wr = { 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT };
- AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE);
- hWnd = CreateWindowEx(NULL,
- "WindowClass",
- "Triangle",
- WS_OVERLAPPEDWINDOW,
- 300,
- 300,
- wr.right - wr.left,
- wr.bottom - wr.top,
- NULL,
- NULL,
- hInstance,
- NULL);
- ShowWindow(hWnd, nCmdShow);
- // set up and initialize Direct3D
- InitD3D(hWnd);
- // enter the main loop:
- MSG msg;
- while (TRUE)
- {
- if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
- {
- TranslateMessage(&msg);
- DispatchMessage(&msg);
- if (msg.message == WM_QUIT)
- break;
- }
- RenderFrame();
- }
- // clean up DirectX and COM
- CleanD3D();
- return msg.wParam;
- }
- // this is the main message handler for the program
- LRESULT CALLBACK WindowProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
- {
- switch (message)
- {
- case WM_DESTROY:
- {
- PostQuitMessage(0);
- return 0;
- } break;
- }
- return DefWindowProc(hWnd, message, wParam, lParam);
- }
- // this function initializes and prepares Direct3D for use
- void InitD3D(HWND hWnd)
- {
- // create a struct to hold information about the swap chain
- DXGI_SWAP_CHAIN_DESC scd;
- // clear out the struct for use
- ZeroMemory(&scd, sizeof(DXGI_SWAP_CHAIN_DESC));
- // fill the swap chain description struct
- scd.BufferCount = 1; // one back buffer
- scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // use 32-bit color
- scd.BufferDesc.Width = SCREEN_WIDTH; // set the back buffer width
- scd.BufferDesc.Height = SCREEN_HEIGHT; // set the back buffer height
- scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; // how swap chain is to be used
- scd.OutputWindow = hWnd; // the window to be used
- scd.SampleDesc.Count = 4; // how many multisamples
- scd.Windowed = TRUE; // windowed/full-screen mode
- scd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; // allow full-screen switching
- // create a device, device context and swap chain using the information in the scd struct
- D3D11CreateDeviceAndSwapChain(NULL,
- D3D_DRIVER_TYPE_HARDWARE,
- NULL,
- NULL,
- NULL,
- NULL,
- D3D11_SDK_VERSION,
- &scd,
- &swapchain,
- &dev,
- NULL,
- &devcon);
- // get the address of the back buffer
- ID3D11Texture2D *pBackBuffer;
- swapchain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&pBackBuffer);
- // use the back buffer address to create the render target
- dev->CreateRenderTargetView(pBackBuffer, NULL, &backbuffer);
- pBackBuffer->Release();
- // set the render target as the back buffer
- devcon->OMSetRenderTargets(1, &backbuffer, NULL);
- // Set the viewport
- D3D11_VIEWPORT viewport;
- ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT));
- viewport.TopLeftX = 0;
- viewport.TopLeftY = 0;
- viewport.Width = SCREEN_WIDTH;
- viewport.Height = SCREEN_HEIGHT;
- devcon->RSSetViewports(1, &viewport);
- InitPipeline();
- InitGraphics();
- }
- // this is the function used to render a single frame
- void RenderFrame(void)
- {
- // clear the back buffer to a deep blue
- devcon->ClearRenderTargetView(backbuffer, D3DXCOLOR(0.0f, 0.2f, 0.4f, 1.0f));
- // select which vertex buffer to display
- UINT stride = sizeof(VERTEX);
- UINT offset = 0;
- devcon->IASetVertexBuffers(0, 1, &pVBuffer, &stride, &offset);
- // select which primtive type we are using
- devcon->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
- // draw the vertex buffer to the back buffer
- devcon->Draw(3, 0);
- // switch the back buffer and the front buffer
- swapchain->Present(0, 0);
- }
- // this is the function that cleans up Direct3D and COM
- void CleanD3D(void)
- {
- swapchain->SetFullscreenState(FALSE, NULL); // switch to windowed mode
- // close and release all existing COM objects
- pLayout->Release();
- pVS->Release();
- pPS->Release();
- pVBuffer->Release();
- swapchain->Release();
- backbuffer->Release();
- dev->Release();
- devcon->Release();
- }
- // this is the function that creates the shape to render
- void InitGraphics()
- {
- //Assimpmodel *model = new Assimpmodel();
- //model->Initialize(dev);
- // create a triangle using the VERTEX struct
- VERTEX OurVertices[] =
- {
- { D3DXVECTOR3(0.0f, 0.5f, 0.0f), D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f) },
- { D3DXVECTOR3(0.45f, -0.5, 0.0f), D3DXCOLOR(0.0f, 1.0f, 0.0f, 1.0f) },
- { D3DXVECTOR3(-0.45f, -0.5f, 0.0f), D3DXCOLOR(0.0f, 0.0f, 1.0f, 1.0f) }
- };
- // create the vertex buffer
- D3D11_BUFFER_DESC bd;
- ZeroMemory(&bd, sizeof(bd));
- bd.Usage = D3D11_USAGE_DYNAMIC; // write access access by CPU and GPU
- bd.ByteWidth = sizeof(VERTEX)* 3; // size is the VERTEX struct * 3
- bd.BindFlags = D3D11_BIND_VERTEX_BUFFER; // use as a vertex buffer
- bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; // allow CPU to write in buffer
- dev->CreateBuffer(&bd, NULL, &pVBuffer); // create the buffer
- // copy the vertices into the buffer
- D3D11_MAPPED_SUBRESOURCE ms;
- devcon->Map(pVBuffer, NULL, D3D11_MAP_WRITE_DISCARD, NULL, &ms); // map the buffer
- memcpy(ms.pData, OurVertices, sizeof(OurVertices)); // copy the data
- devcon->Unmap(pVBuffer, NULL); // unmap the buffer
- }
- // this function loads and prepares the shaders
- void InitPipeline()
- {
- // load and compile the two shaders
- ID3D10Blob *VS, *PS;
- D3DX11CompileFromFile("shaders.shader", 0, 0, "VShader", "vs_5_0", 0, 0, 0, &VS, 0, 0);
- D3DX11CompileFromFile("shaders.shader", 0, 0, "PShader", "ps_5_0", 0, 0, 0, &PS, 0, 0);
- // encapsulate both shaders into shader objects
- dev->CreateVertexShader(VS->GetBufferPointer(), VS->GetBufferSize(), NULL, &pVS);
- dev->CreatePixelShader(PS->GetBufferPointer(), PS->GetBufferSize(), NULL, &pPS);
- // set the shader objects
- devcon->VSSetShader(pVS, 0, 0);
- devcon->PSSetShader(pPS, 0, 0);
- // create the input layout object
- D3D11_INPUT_ELEMENT_DESC ied[] =
- {
- { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
- { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
- };
- dev->CreateInputLayout(ied, 2, VS->GetBufferPointer(), VS->GetBufferSize(), &pLayout);
- devcon->IASetInputLayout(pLayout);
- }
shader.shader
- struct VOut
- {
- float4 position : SV_POSITION;
- float4 color : COLOR;
- };
- VOut VShader(float4 position : POSITION, float4 color : COLOR)
- {
- VOut output;
- output.position = position;
- output.color = color;
- return output;
- }
- float4 PShader(float4 position : SV_POSITION, float4 color : COLOR) : SV_TARGET
- {
- return color;
- }
代码就不详细说了,具体可以看参考的链接。
结果如下
封装出一个简单的框架
将所有的代码都写在main.cpp里肯定不是太好,最好按功能抽象出各种类型。下面是参照教程写的一个框架。
简单的一个框架,还是渲染一个小小的三角形,但是是抽了很多个类出来,比如相机,输入之类的,方面后面扩展。
当然还是一个比较槽的框架哈。
代码直接看github吧。