数值设定-公式篇

发表于2015-10-29
评论1 1.3k浏览

数值设定——公式篇

——Written by Mervin

数值设定的步骤很多,本文只讲公式类型、特点及应用;牵涉到数值设定中常遇到的几种类型的设定:几率、经验、属性、技能;

本文由简入烦,主体以公式的类型、特色来划分章节,穿插几种类型的设定讲解。

OK,Lets Begin。

 

一、加减乘除

线型为线性,变化稳定,比较容易找到规律,预期后面的发展

举几个例子:

1,  每加一点力量,近战物理攻击加1;射击一次,子弹数减少1;

2,  每使用一次冰箭术,熟练度加1,达到2000时,升级为2级;

3,  宠物近战物理伤害=宠物物理攻击-目标物理防御;宠物近战物理伤害=宠物物理攻击*目标物理吸收比;近战物理技能伤害=(武器伤害+技能附加)*技能增幅)*目标物理吸收;

4,  血击(技能):在HP <50%时,将自己所有HP化为伤害,攻击目标,使用后生命值为1;伤害=(基本伤害+当前HP)*(1+技能等级调整值+10*当前HP/最大HP)

 

总结:

         加减的运算最为直观,一眼就可以发现规律,甚至潜意识;

         乘除的运算容易简单、直接的对数据造成跳跃性,而常常是有意识、有规律的跳动;

         混合运用时,可以实现很多有特色的功能

 

二、幂函数

幂函数f(x)=x^i;对比函数g(x)=x

当0<i<1时,[0,1]区间内,f(x)>g(x);[1,]区间内,f(x)<g(x);先急后缓;

当i>1时,[0,1]区间内,f(x)<g(x);[1,∞]区间内,f(x)>g(x);先缓后急;

i<0时,[0,1]区间内,f(x)逼近无穷大;[1,∞]区间内,f(x)逼近无穷小;

 

示例曲线图如下:

 

举例应用:

1,  升级经验=ceiling(1000*等级^(2/3),1)(ceiling=向上取整)

2,  消除类休闲游戏(如宝石迷阵COMBO得分=100*本次宝石个数*2^combo次数

3,  魔法攻击=智力值+[int(智力值/10)]^2;int=向下取整)

4,  f(x)=1/x的应用:

         血击伤害Ver2.0=基础伤害+当前HP)*[14*技能等级调整值*当前HP/(最大HP-当前HP)]

         攻击速度=50/{200 -[(250-敏捷-灵巧/4)/50*(200-基本速度)]}

5,  命中率=100/[1+(150-敏捷)]

6,  魔法回复(点/秒)=2+(2+精神/50)^2

 

总结:

0,  前期容易后期难是普遍的经验值递加设计原则,i<1时具有这种特性;

1,  i>1造成的连锁递增效应是用来奖励的上好措施,但缺点是有限区间内拓展

2,  某些需要积累到一定程度才能体现出优越性的属性设定往往要用到f(x)=x^i(i>1)的先缓后急的特性。

3,  f(x)=1/x常常以a/(b-x)的形式出现,常常用来实现具有临界值的属性设定,且x多有取值限制,需要很好的前期规划;

4,  接上,1/x的x取值区间常定义在[1,max],有时也会进入[0,1]这一段,一般都是通过将[1,max]区间进行除算,得到新的[1/a,max];可以产生新的临界点;

5,  幂数的计算相对复杂,不适合做心跳计算;指数函数极少应用;

 

三、数组、数列

有限个具有相同变量名的相同类型的下标变量的有序排列,叫做一个数组

一元数组:{a1,a2,,ai,,an}

二元数组:{a(1,1),a(1,2),a(1,3),a(2,1),a(2,2),a(2,3),,a(3,3)}

 

按一定次序排列的一列数,叫做数列数列;无穷数列;n项合Sn

等差数列:ai-a(i-1)=n,Sn=(a0+an)n/2

等比数列:ai/a(i-1)=n,Sn=a0(1-q^(n-1))/q,q=ai/a(i-1)

斐波那契数列:a(i+1)=ai+a(i-1),a0=1,a1=1

{1,1,2,3,5,8,13,21,34,55,89,144,233}

         假设一对初生兔子要一个月才到成熟期,而一对成熟兔子每月会生一对兔子,那么,由一对初生兔子开始,12 个月后会有多少对兔子呢?144对。

         完全树的叶子数斐波那契数列增长;

         连续 10 个斐波那契之和,必定等于第 7 个数 11 倍。

数列是函数的离散形式;数组是离散的值的集合

 

举几个例子:

1,  1~5级升级每次获得3点属性点,而后每5级多获得1点,即6~10级4点,11~15级5点……,50级后,每4级一个跳跃;

2,  本级升级所需经验=上级所需经验+本级等级数*10000

3,  休闲小游戏COMBO得分Ver2.0:Combo1=宝石数*c1,Combo2=宝石数*c2,Combo3=宝石数*(c1+c2),,Combo(i)=宝石数*(c(i-2)+c(i-1))其中c1=2,c2=3;

 

 

总结:

         对于一些不方便、不必要用公式来表达的数值,采用数组直接存取方便快捷;(你也可以说这是索引表)

         对等差、等比这种最基础的数列进行一些细节的改变,往往可以产生微妙的变化。例2就是一个递归的例子,曲线走势类似f(x)=x^2;(当然,你也可以说这本来就是递归)

         数组、数列其本身并不是什么公式,更多的是一个看问题的角度;

 

 

四、正态分布

正态分布的应用非常深、广,笔者实在是能力有限,只探讨下在几率问题上的正态分布;

Random[]:在[0,1]随机取数;

Random[Integer,{1,100}]:在[1,100]上随机取整数

1d8=Random[Integer,{1,8}]:投一次8面

2d4=Random[Integer,{1,4}]+Random[Integer,{1,4}]:投2次4面骰;

xdy=Random[Integer,{1,y}]+ Random[Integer,{1,y}]+:投x次y面骰,设结果为s结果s的几率p′,那么,设p=p′*y^x,则为受x,y,s影响的3元函数,p(x,y,s)

         1/(y^x)为p′的最小单位;

         s[x,xy],s为整数;

         x=1时,分布曲线为平行线y=1/y;x=2时,分布曲线为折线,示例图如下(实际为散点图)横轴为s,纵轴为p

         x>2时,s的出现几率p(s):(B[n,m]为Binomial[n,m]的省略,组合;n≥m)

p(x,y,s)={B[x,1]*p(x-1,y-1,s-y)+B[x,2]*p(x-2,y-1,s-2y)++B[x,3]*p(x-i,y-1,s-i*y)}+{B[x,1]*p(x-1,y-2,s-y)+B[x,2]*p(x-2,y-2,s-2*y)++B[x,i]*p(x-i,y-2,s-i*y)}++B[x,i]*p(x-i,y-j,s-i*y)+

i,j,x,y,sinteger,1≤i<x,1≤j<y

         上式中,B[x,i]*p(x-i,y-j,s-i*y)有解的条件是:

x≤i*(y-j)+x-i≤s-i*y

         曲线总为对称图形,s=(xy+x)/2时的p(x,y,s)值最大,s为整数,唯一最大,为小数,上下取整,两个最大值

         必须注意的是,x,y是一常量,i,j是变量;请勿混淆;

         给出示意图一张(5d4),横轴为s,纵轴为p

         p(a,b,a)=1,p(a,b,ab)=1p′=1

         另外一种计算p的方式较为容易理解,我称之为冒泡法;见示意图,讲述的是p(5,4,7)的求解过程;

于是,这个问题转化成:将s-x个球放入x个口袋中,每个口袋最多能装y-1个球,有多少种分法?

 

举几个例子:

1,  某盗贼的闪躲为20%;即Random[integer,{1,100}]≤20时,闪躲成功,否则失败;

2,  某盗贼的闪躲为20%,格挡为10%,两者优先级等同;即Random[integer,{1,100}]≤20时,闪躲成功,21≤Random[integer,{1,100}]≤30格挡成功;

3,  某盗贼的闪躲是20%,格挡是10%,完全闪躲是25%,优先级完全闪躲>闪躲=格挡;即Random[integer,{1,100}]≤25时,完全闪躲,否则,Random[integer,{1,100}]≤20闪躲,21≤Random[integer,{1,100}]≤30格挡;

4,  弓的攻击是2-10,弩的攻击5-7;便是2dy1和5dy2(y1>y2)的简化应用当然,实际效果是1d9+1和1d3+4

5,   

 

总结:

         我将例1、2中的随机数称为部分随机数因为存在部分的无用数

         骰子是随机数的一种特殊情况,总是有解,我称之为完全随机数

         几率都可以用p(x,y,s)表达;

         p(x,y,s)中的x控制曲线的坡度,y控制曲线的左右跨度,s决定几率大小,x*y决定曲线的成长性;x:y决定曲线的整体走势

         接上,当1←x<y时,趋于平缓;y<x→xy时,趋于陡峭

         任意一种随机数的随机事件都受到收益递减的影响,见下图,表示的是在闪躲提高时,闪躲成功:不闪躲的比例:

         p(3,y,s)在s∈[3,y+3-1]上递归增长(一元递归),规律如下(x=3)

1,x,2x,3x+1,4x+2,,ix+(i-2),

或者表达为(将上式看做一个数列)

{p2-p1,p3-p2,,pi-p(i-1),}为等差数列首项p1=2,等差d=1

         p(4,y,s)有类似规律,为二元递归

         若y1<y2,p1(3,y1,s)在s∈[3,y1+3-1]和p2(3,y2,s)在s∈[3,y2+3-1],p1和p2在s∈[3,y1+3-1]上相等

         [3,y+3-1]区间存在一个递归减少的对称区间,对称轴s=(xy+x)/2

 

五、作者的话

对于数值设定是一项庞大的过程,需要很清晰的思路和逻辑,工作流程不多螯述,做过的基本都知道不想对哪部分重要、哪部分次要做评价,个人觉得这是混泥土和钢筋的关系,一个发挥不了作用,结合才是正道。

作者的信条是条件决定结果,尽量简化过程,懂的取舍,懂的轻重;

本篇是第一弹,正在努力推出其他部分的一些东西;因为公式的内容相对比较具体,有很多前人的经验在铺路(虽然正态分布部分的内容完全是自己总结出来的,汗,高数学的差的结果,觉得有这么个东西,但就是想不起来)

特别申明一下,正态分布部分的内容因为没有太多实际的操作经验,所以不太好胡乱举例,避免引起误解

 

《数学模型的建设——起点篇》正在杜撰中……

如社区发表内容存在侵权行为,您可以点击这里查看侵权投诉指引

0个评论